Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.06281
Cited By
BayesFlow: Learning complex stochastic models with invertible neural networks
13 March 2020
Stefan T. Radev
U. Mertens
A. Voss
Lynton Ardizzone
Ullrich Kothe
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"BayesFlow: Learning complex stochastic models with invertible neural networks"
27 / 27 papers shown
Title
Robust Simulation-Based Inference under Missing Data via Neural Processes
Yogesh Verma
Ayush Bharti
Vikas K. Garg
72
0
0
03 Mar 2025
Expert-elicitation method for non-parametric joint priors using normalizing flows
F. Bockting
Stefan T. Radev
Paul-Christian Bürkner
BDL
105
1
0
24 Nov 2024
Compositional simulation-based inference for time series
Manuel Gloeckler
S. Toyota
Kenji Fukumizu
Jakob H Macke
58
2
0
05 Nov 2024
Inverse decision-making using neural amortized Bayesian actors
Dominik Straub
Tobias F. Niehues
Jan Peters
Constantin Rothkopf
41
0
0
04 Sep 2024
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Bürkner
75
4
0
23 Aug 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
59
6
0
08 Apr 2024
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
71
18
0
07 Feb 2024
InvertibleNetworks.jl: A Julia package for scalable normalizing flows
Rafael Orozco
Philipp A. Witte
M. Louboutin
Ali Siahkoohi
G. Rizzuti
Bas Peters
Felix J. Herrmann
40
9
0
20 Dec 2023
Amortized Bayesian Decision Making for simulation-based models
Mila Gorecki
Jakob H. Macke
Michael Deistler
32
1
0
05 Dec 2023
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
41
15
0
04 Oct 2023
Lifting Architectural Constraints of Injective Flows
Peter Sorrenson
Felix Dräxler
Armand Rousselot
Sander Hummerich
Leandro Zimmerman
Ullrich Kothe
TPM
AI4CE
39
8
0
02 Jun 2023
Physics-informed neural networks for solving forward and inverse problems in complex beam systems
Taniya Kapoor
Hongrui Wang
A. Núñez
R. Dollevoet
AI4CE
PINN
28
46
0
02 Mar 2023
Misspecification-robust Sequential Neural Likelihood for Simulation-based Inference
Ryan P. Kelly
David J. Nott
David T. Frazier
D. Warne
Christopher C. Drovandi
38
11
0
31 Jan 2023
Certified Invertibility in Neural Networks via Mixed-Integer Programming
Tianqi Cui
Tom S. Bertalan
George J. Pappas
M. Morari
Ioannis G. Kevrekidis
Mahyar Fazlyab
AAML
29
2
0
27 Jan 2023
Compositional Score Modeling for Simulation-based Inference
Tomas Geffner
George Papamakarios
A. Mnih
72
25
0
28 Sep 2022
Reliable amortized variational inference with physics-based latent distribution correction
Ali Siahkoohi
G. Rizzuti
Rafael Orozco
Felix J. Herrmann
41
28
0
24 Jul 2022
Likelihood-Free Inference with Generative Neural Networks via Scoring Rule Minimization
Lorenzo Pacchiardi
Ritabrata Dutta
TPM
BDL
UQCV
GAN
31
18
0
31 May 2022
Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks
Marvin Schmitt
Paul-Christian Bürkner
Ullrich Kothe
Stefan T. Radev
39
35
0
16 Dec 2021
Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization
Lorenzo Pacchiardi
Rilwan A. Adewoyin
P. Dueben
Ritabrata Dutta
AI4TS
24
21
0
15 Dec 2021
Normalizing field flows: Solving forward and inverse stochastic differential equations using physics-informed flow models
Ling Guo
Hao Wu
Tao Zhou
AI4CE
14
45
0
30 Aug 2021
Neural Networks for Parameter Estimation in Intractable Models
Amanda Lenzi
J. Bessac
J. Rudi
Michael L. Stein
BDL
33
50
0
29 Jul 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
41
2
0
23 Jun 2021
Understanding Event-Generation Networks via Uncertainties
Marco Bellagente
Manuel Haussmann
Michel Luchmann
Tilman Plehn
BDL
43
55
0
09 Apr 2021
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
39
33
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
104
186
0
12 Jan 2021
Convolutional Neural Networks as Summary Statistics for Approximate Bayesian Computation
Mattias Åkesson
Prashant Singh
Fredrik Wrede
Andreas Hellander
BDL
34
33
0
31 Jan 2020
The Neural Moving Average Model for Scalable Variational Inference of State Space Models
Tom Ryder
D. Prangle
Andrew Golightly
Isaac Matthews
BDL
AI4TS
21
6
0
02 Oct 2019
1