Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.06097
Cited By
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
13 March 2020
Liu Yang
Xuhui Meng
George Karniadakis
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data"
26 / 76 papers shown
Title
Calibrating constitutive models with full-field data via physics informed neural networks
Craig M. Hamel
K. Long
S. Kramer
AI4CE
27
28
0
30 Mar 2022
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
25
115
0
17 Mar 2022
Scalable Uncertainty Quantification for Deep Operator Networks using Randomized Priors
Yibo Yang
Georgios Kissas
P. Perdikaris
BDL
UQCV
22
40
0
06 Mar 2022
Bounded nonlinear forecasts of partially observed geophysical systems with physics-constrained deep learning
Said Ouala
Steven L. Brunton
A. Pascual
Bertrand Chapron
F. Collard
L. Gaultier
Ronan Fablet
PINN
AI4TS
AI4CE
18
10
0
11 Feb 2022
Physics-informed neural networks for solving parametric magnetostatic problems
Andrés Beltrán-Pulido
Ilias Bilionis
D. Aliprantis
24
34
0
08 Feb 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
24
1,177
0
14 Jan 2022
De Rham compatible Deep Neural Network FEM
M. Longo
J. Opschoor
Nico Disch
Christoph Schwab
Jakob Zech
17
8
0
14 Jan 2022
Solving time dependent Fokker-Planck equations via temporal normalizing flow
Xiaodong Feng
Li Zeng
Tao Zhou
AI4CE
31
25
0
28 Dec 2021
DeepParticle: learning invariant measure by a deep neural network minimizing Wasserstein distance on data generated from an interacting particle method
Zhongjian Wang
Jack Xin
Zhiwen Zhang
39
15
0
02 Nov 2021
An extended physics informed neural network for preliminary analysis of parametric optimal control problems
N. Demo
M. Strazzullo
G. Rozza
PINN
28
33
0
26 Oct 2021
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yihang Gao
Michael K. Ng
27
28
0
30 Aug 2021
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Benjamin Moseley
Andrew Markham
T. Nissen‐Meyer
PINN
45
209
0
16 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
39
64
0
02 Jul 2021
Inverse-Dirichlet Weighting Enables Reliable Training of Physics Informed Neural Networks
S. Maddu
D. Sturm
Christian L. Müller
I. Sbalzarini
AI4CE
18
80
0
02 Jul 2021
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
Tim De Ryck
Siddhartha Mishra
PINN
8
100
0
28 Jun 2021
Multifidelity Modeling for Physics-Informed Neural Networks (PINNs)
Michael Penwarden
Shandian Zhe
A. Narayan
Robert M. Kirby
10
42
0
25 Jun 2021
Joint Deep Reversible Regression Model and Physics-Informed Unsupervised Learning for Temperature Field Reconstruction
Zhiqiang Gong
Weien Zhou
Jun Zhang
Wei Peng
W. Yao
AI4CE
29
11
0
22 Jun 2021
Learning Functional Priors and Posteriors from Data and Physics
Xuhui Meng
Liu Yang
Zhiping Mao
J. Ferrandis
George Karniadakis
AI4CE
27
61
0
08 Jun 2021
Applying physics-based loss functions to neural networks for improved generalizability in mechanics problems
Samuel J. Raymond
David B. Camarillo
PINN
AI4CE
25
12
0
30 Apr 2021
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
Naoya Takeishi
Alexandros Kalousis
DRL
AI4CE
22
54
0
25 Feb 2021
Physics-Informed Neural Networks for Nonhomogeneous Material Identification in Elasticity Imaging
Enrui Zhang
Minglang Yin
George Karniadakis
12
64
0
02 Sep 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sifan Wang
Xinling Yu
P. Perdikaris
30
874
0
28 Jul 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
15
170
0
29 Jun 2020
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao-Lun Sun
Yang Liu
PINN
AI4CE
15
222
0
10 Jun 2020
DiscretizationNet: A Machine-Learning based solver for Navier-Stokes Equations using Finite Volume Discretization
Rishikesh Ranade
C. Hill
Jay Pathak
AI4CE
46
123
0
17 May 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
Previous
1
2