ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.05033
  4. Cited By
Generalized Energy Based Models

Generalized Energy Based Models

10 March 2020
Michael Arbel
Liang Zhou
Arthur Gretton
    DRL
ArXivPDFHTML

Papers citing "Generalized Energy Based Models"

50 / 71 papers shown
Title
Wasserstein Gradient Flows for Moreau Envelopes of f-Divergences in Reproducing Kernel Hilbert Spaces
Wasserstein Gradient Flows for Moreau Envelopes of f-Divergences in Reproducing Kernel Hilbert Spaces
Viktor Stein
Sebastian Neumayer
Gabriele Steidl
Nicolaj Rux
90
10
0
07 Feb 2024
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
221
30,089
0
01 Mar 2022
The Unreasonable Effectiveness of Patches in Deep Convolutional Kernels
  Methods
The Unreasonable Effectiveness of Patches in Deep Convolutional Kernels Methods
L. Thiry
Michael Arbel
Eugene Belilovsky
Edouard Oyallon
AAML
44
14
0
19 Jan 2021
Residual Energy-Based Models for Text Generation
Residual Energy-Based Models for Text Generation
Yuntian Deng
A. Bakhtin
Myle Ott
Arthur Szlam
MarcÁurelio Ranzato
62
132
0
22 Apr 2020
Flows for simultaneous manifold learning and density estimation
Flows for simultaneous manifold learning and density estimation
Johann Brehmer
Kyle Cranmer
DRL
AI4CE
84
162
0
31 Mar 2020
Your GAN is Secretly an Energy-based Model and You Should use
  Discriminator Driven Latent Sampling
Your GAN is Secretly an Energy-based Model and You Should use Discriminator Driven Latent Sampling
Tong Che
Ruixiang Zhang
Jascha Narain Sohl-Dickstein
Hugo Larochelle
Liam Paull
Yuan Cao
Yoshua Bengio
DiffM
DRL
58
114
0
12 Mar 2020
Training Deep Energy-Based Models with f-Divergence Minimization
Training Deep Energy-Based Models with f-Divergence Minimization
Lantao Yu
Yang Song
Jiaming Song
Stefano Ermon
219
42
0
06 Mar 2020
Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum
  under Heavy-Tailed Gradient Noise
Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum under Heavy-Tailed Gradient Noise
Umut Simsekli
Lingjiong Zhu
Yee Whye Teh
Mert Gurbuzbalaban
34
49
0
13 Feb 2020
Smoothness and Stability in GANs
Smoothness and Stability in GANs
Casey Chu
Kentaro Minami
Kenji Fukumizu
GAN
43
56
0
11 Feb 2020
Your Classifier is Secretly an Energy Based Model and You Should Treat
  it Like One
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl
Kuan-Chieh Wang
J. Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
76
542
0
06 Dec 2019
LOGAN: Latent Optimisation for Generative Adversarial Networks
LOGAN: Latent Optimisation for Generative Adversarial Networks
Yongpeng Wu
Jeff Donahue
David Balduzzi
Karen Simonyan
Timothy Lillicrap
GAN
53
88
0
02 Dec 2019
Energy-Inspired Models: Learning with Sampler-Induced Distributions
Energy-Inspired Models: Learning with Sampler-Induced Distributions
Dieterich Lawson
George Tucker
Bo Dai
Rajesh Ranganath
45
31
0
31 Oct 2019
Kernelized Wasserstein Natural Gradient
Kernelized Wasserstein Natural Gradient
Michael Arbel
Arthur Gretton
Wuchen Li
Guido Montúfar
48
22
0
21 Oct 2019
Discriminator optimal transport
Discriminator optimal transport
A. Tanaka
OT
48
54
0
15 Oct 2019
Learning Energy-based Spatial-Temporal Generative ConvNets for Dynamic
  Patterns
Learning Energy-based Spatial-Temporal Generative ConvNets for Dynamic Patterns
Jianwen Xie
Song-Chun Zhu
Ying Nian Wu
GAN
58
52
0
26 Sep 2019
Subsampling Generative Adversarial Networks: Density Ratio Estimation in
  Feature Space with Softplus Loss
Subsampling Generative Adversarial Networks: Density Ratio Estimation in Feature Space with Softplus Loss
Xin Ding
Z. Jane Wang
William J. Welch
109
18
0
24 Sep 2019
Large Scale Adversarial Representation Learning
Large Scale Adversarial Representation Learning
Jeff Donahue
Karen Simonyan
SSL
122
543
0
04 Jul 2019
Efficient Algorithms for Smooth Minimax Optimization
Efficient Algorithms for Smooth Minimax Optimization
K. K. Thekumparampil
Prateek Jain
Praneeth Netrapalli
Sewoong Oh
72
192
0
02 Jul 2019
Bias Correction of Learned Generative Models using Likelihood-Free
  Importance Weighting
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
Aditya Grover
Jiaming Song
Alekh Agarwal
Kenneth Tran
Ashish Kapoor
Eric Horvitz
Stefano Ermon
51
124
0
23 Jun 2019
The Implicit Metropolis-Hastings Algorithm
The Implicit Metropolis-Hastings Algorithm
Kirill Neklyudov
Evgenii Egorov
Dmitry Vetrov
33
5
0
09 Jun 2019
Deep Compressed Sensing
Deep Compressed Sensing
Yan Wu
Mihaela Rosca
Timothy Lillicrap
GAN
72
165
0
16 May 2019
Exponential Family Estimation via Adversarial Dynamics Embedding
Exponential Family Estimation via Adversarial Dynamics Embedding
Bo Dai
Ziqiang Liu
H. Dai
Niao He
Arthur Gretton
Le Song
Dale Schuurmans
60
53
0
27 Apr 2019
Metropolis-Hastings Generative Adversarial Networks
Metropolis-Hastings Generative Adversarial Networks
Ryan D. Turner
Jane Hung
Eric Frank
Yunus Saatci
J. Yosinski
GAN
46
99
0
28 Nov 2018
Self-Supervised GANs via Auxiliary Rotation Loss
Self-Supervised GANs via Auxiliary Rotation Loss
Ting Chen
Xiaohua Zhai
Marvin Ritter
Mario Lucic
N. Houlsby
SSL
GAN
71
302
0
27 Nov 2018
Learning deep kernels for exponential family densities
Learning deep kernels for exponential family densities
W. Li
Danica J. Sutherland
Heiko Strathmann
Arthur Gretton
BDL
41
74
0
20 Nov 2018
Kernel Exponential Family Estimation via Doubly Dual Embedding
Kernel Exponential Family Estimation via Doubly Dual Embedding
Heike Adel
H. Dai
Arthur Gretton
Le Song
Dale Schuurmans
Niao He
32
36
0
06 Nov 2018
Interpolating between Optimal Transport and MMD using Sinkhorn
  Divergences
Interpolating between Optimal Transport and MMD using Sinkhorn Divergences
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
OT
55
526
0
18 Oct 2018
Discriminator Rejection Sampling
Discriminator Rejection Sampling
S. Azadi
Catherine Olsson
Trevor Darrell
Ian Goodfellow
Augustus Odena
61
131
0
16 Oct 2018
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock
Jeff Donahue
Karen Simonyan
237
5,381
0
28 Sep 2018
Autoregressive Quantile Networks for Generative Modeling
Autoregressive Quantile Networks for Generative Modeling
Georg Ostrovski
Will Dabney
Rémi Munos
DRL
70
87
0
14 Jun 2018
On gradient regularizers for MMD GANs
On gradient regularizers for MMD GANs
Michael Arbel
Danica J. Sutherland
Mikolaj Binkowski
Arthur Gretton
61
95
0
29 May 2018
Learning Descriptor Networks for 3D Shape Synthesis and Analysis
Learning Descriptor Networks for 3D Shape Synthesis and Analysis
Jianwen Xie
Zilong Zheng
Ruiqi Gao
Wenguan Wang
Song-Chun Zhu
Ying Nian Wu
GAN
3DV
59
146
0
02 Apr 2018
Learning Approximate Inference Networks for Structured Prediction
Learning Approximate Inference Networks for Structured Prediction
Lifu Tu
Kevin Gimpel
BDL
43
53
0
09 Mar 2018
On the Convergence and Robustness of Training GANs with Regularized
  Optimal Transport
On the Convergence and Robustness of Training GANs with Regularized Optimal Transport
Maziar Sanjabi
Jimmy Ba
Meisam Razaviyayn
Jason D. Lee
GAN
65
137
0
22 Feb 2018
Spectral Normalization for Generative Adversarial Networks
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
155
4,433
0
16 Feb 2018
Stochastic subgradient method converges at the rate $O(k^{-1/4})$ on
  weakly convex functions
Stochastic subgradient method converges at the rate O(k−1/4)O(k^{-1/4})O(k−1/4) on weakly convex functions
Damek Davis
Dmitriy Drusvyatskiy
58
101
0
08 Feb 2018
Demystifying MMD GANs
Demystifying MMD GANs
Mikolaj Binkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
EGVM
112
1,487
0
04 Jan 2018
Geometrical Insights for Implicit Generative Modeling
Geometrical Insights for Implicit Generative Modeling
Léon Bottou
Martín Arjovsky
David Lopez-Paz
Maxime Oquab
52
49
0
21 Dec 2017
Kernel Conditional Exponential Family
Kernel Conditional Exponential Family
Michael Arbel
Arthur Gretton
50
25
0
15 Nov 2017
On the Discrimination-Generalization Tradeoff in GANs
On the Discrimination-Generalization Tradeoff in GANs
Pengchuan Zhang
Qiang Liu
Dengyong Zhou
Tao Xu
Xiaodong He
57
103
0
07 Nov 2017
Dual Discriminator Generative Adversarial Nets
Dual Discriminator Generative Adversarial Nets
T. Nguyen
Trung Le
H. Vu
Dinh Q. Phung
GAN
48
310
0
12 Sep 2017
Underdamped Langevin MCMC: A non-asymptotic analysis
Underdamped Langevin MCMC: A non-asymptotic analysis
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
82
297
0
12 Jul 2017
Gradient descent GAN optimization is locally stable
Gradient descent GAN optimization is locally stable
Vaishnavh Nagarajan
J. Zico Kolter
GAN
69
348
0
13 Jun 2017
Approximation and Convergence Properties of Generative Adversarial
  Learning
Approximation and Convergence Properties of Generative Adversarial Learning
Shuang Liu
Olivier Bousquet
Kamalika Chaudhuri
41
138
0
24 May 2017
MMD GAN: Towards Deeper Understanding of Moment Matching Network
MMD GAN: Towards Deeper Understanding of Moment Matching Network
Chun-Liang Li
Wei-Cheng Chang
Yu Cheng
Yiming Yang
Barnabás Póczós
GAN
66
721
0
24 May 2017
Efficient and principled score estimation with Nyström kernel
  exponential families
Efficient and principled score estimation with Nyström kernel exponential families
Danica J. Sutherland
Heiko Strathmann
Michael Arbel
Arthur Gretton
40
24
0
23 May 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
168
1,349
0
19 May 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
167
9,533
0
31 Mar 2017
Generalization and Equilibrium in Generative Adversarial Nets (GANs)
Generalization and Equilibrium in Generative Adversarial Nets (GANs)
Sanjeev Arora
Rong Ge
Yingyu Liang
Tengyu Ma
Yi Zhang
GAN
54
688
0
02 Mar 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
70
521
0
13 Feb 2017
12
Next