Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.04919
Cited By
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
10 March 2020
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems"
36 / 36 papers shown
Title
Knowledge Guided Encoder-Decoder Framework: Integrating Multiple Physical Models for Agricultural Ecosystem Modeling
Qi Cheng
Licheng Liu
Yao Zhang
Mu Hong
Shiyuan Luo
Zhenong Jin
Yiqun Xie
Xiaowei Jia
31
0
0
05 May 2025
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Melkamu Mersha
Khang Lam
Joseph Wood
Ali AlShami
Jugal Kalita
XAI
AI4TS
67
28
0
30 Aug 2024
RAIN: Reinforcement Algorithms for Improving Numerical Weather and Climate Models
Pritthijit Nath
Henry Moss
Emily Shuckburgh
Mark Webb
AI4Cl
AI4CE
34
0
0
28 Aug 2024
Hybrid Modeling Design Patterns
Maja Rudolph
Stefan Kurz
Barbara Rakitsch
AI4CE
28
8
0
29 Dec 2023
Learning-Initialized Trajectory Planning in Unknown Environments
Yicheng Chen
Jinjie Li
Wenyuan Qin
Yongzhao Hua
Xiwang Dong
Qingdong Li
21
0
0
19 Sep 2023
Explainable Predictive Maintenance
Sepideh Pashami
Sławomir Nowaczyk
Yuantao Fan
Jakub Jakubowski
Nuno Paiva
...
Bruno Veloso
M. Sayed-Mouchaweh
L. Rajaoarisoa
Grzegorz J. Nalepa
João Gama
32
8
0
08 Jun 2023
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
18
10
0
27 Apr 2023
Nonlinear MPC for Quadrotors in Close-Proximity Flight with Neural Network Downwash Prediction
Jinjie Li
Liang Han
Haoyang Yu
Yuheng Lin
Qingdong Li
Z. Ren
26
8
0
16 Apr 2023
Neural DAEs: Constrained neural networks
Tue Boesen
E. Haber
Uri M. Ascher
31
3
0
25 Nov 2022
Physics Informed Machine Learning for Chemistry Tabulation
A. Salunkhe
Dwyer Deighan
P. DesJardin
V. Chandola
10
6
0
06 Nov 2022
Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural Networks on Coupled Ordinary Differential Equations
Alexander New
B. Eng
A. Timm
A. Gearhart
17
4
0
14 Oct 2022
NeuralUQ: A comprehensive library for uncertainty quantification in neural differential equations and operators
Zongren Zou
Xuhui Meng
Apostolos F. Psaros
George Karniadakis
AI4CE
25
35
0
25 Aug 2022
Physics-informed neural networks for PDE-constrained optimization and control
Jostein Barry-Straume
A. Sarshar
Andrey A. Popov
Adrian Sandu
PINN
AI4CE
27
14
0
06 May 2022
Supplementation of deep neural networks with simplified physics-based features to increase model prediction accuracy
Nicholus R. Clinkinbeard
Nicole N. Hashemi
PINN
AI4CE
33
0
0
14 Apr 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
29
84
0
13 Apr 2022
Trust in AI: Interpretability is not necessary or sufficient, while black-box interaction is necessary and sufficient
Max W. Shen
25
18
0
10 Feb 2022
Incorporating Sum Constraints into Multitask Gaussian Processes
Philipp Pilar
Carl Jidling
Thomas B. Schon
Niklas Wahlström
TPM
15
3
0
03 Feb 2022
Physics-enhanced deep surrogates for partial differential equations
R. Pestourie
Youssef Mroueh
Chris Rackauckas
Payel Das
Steven G. Johnson
PINN
AI4CE
25
15
0
10 Nov 2021
Failure-averse Active Learning for Physics-constrained Systems
Cheolhei Lee
Xing Wang
Jianguo Wu
Xiaowei Yue
AI4CE
19
7
0
27 Oct 2021
Physics-constrained Deep Learning for Robust Inverse ECG Modeling
Jianxin Xie
B. Yao
18
21
0
26 Jul 2021
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Benjamin Moseley
Andrew Markham
T. Nissen‐Meyer
PINN
45
209
0
16 Jul 2021
Physics guided machine learning using simplified theories
Suraj Pawar
Omer San
Burak Aksoylu
Adil Rasheed
T. Kvamsdal
PINN
AI4CE
97
106
0
18 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
205
2,282
0
18 Oct 2020
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
C. Jiang
S. Esmaeilzadeh
Kamyar Azizzadenesheli
K. Kashinath
Mustafa A. Mustafa
H. Tchelepi
P. Marcus
P. Prabhat
Anima Anandkumar
AI4CE
187
141
0
01 May 2020
Inverse Problems, Deep Learning, and Symmetry Breaking
Kshitij Tayal
Chieh-Hsin Lai
Vipin Kumar
Ju Sun
AI4CE
72
15
0
20 Mar 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
180
758
0
13 Mar 2020
Physics-Guided Deep Neural Networks for Power Flow Analysis
Xinyue Hu
Haoji Hu
Saurabh Verma
Zhi-Li Zhang
123
123
0
31 Jan 2020
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
146
219
0
29 Sep 2019
Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods
Ferdinando Fioretto
Terrence W.K. Mak
Pascal Van Hentenryck
AI4CE
78
199
0
19 Sep 2019
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
109
355
0
30 Oct 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
241
438
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
278
1,400
0
01 Dec 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
247
3,236
0
24 Nov 2016
Variational Koopman models: slow collective variables and molecular kinetics from short off-equilibrium simulations
Hao Wu
Feliks Nuske
Fabian Paul
Stefan Klus
P. Koltai
Frank Noé
104
126
0
20 Oct 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1