ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.04896
  4. Cited By
Unbiased Estimation of the Gradient of the Log-Likelihood in Inverse
  Problems
v1v2 (latest)

Unbiased Estimation of the Gradient of the Log-Likelihood in Inverse Problems

10 March 2020
Ajay Jasra
K. Law
Deng Lu
ArXiv (abs)PDFHTML

Papers citing "Unbiased Estimation of the Gradient of the Log-Likelihood in Inverse Problems"

8 / 8 papers shown
Title
Unbiased Filtering of a Class of Partially Observed Diffusions
Unbiased Filtering of a Class of Partially Observed Diffusions
Ajay Jasra
K. Law
Fangyuan Yu
40
23
0
10 Feb 2020
SGD: General Analysis and Improved Rates
SGD: General Analysis and Improved Rates
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
84
380
0
27 Jan 2019
Asymptotic Properties of Recursive Maximum Likelihood Estimation in
  Non-Linear State-Space Models
Asymptotic Properties of Recursive Maximum Likelihood Estimation in Non-Linear State-Space Models
V. Tadic
Arnaud Doucet
35
13
0
25 Jun 2018
Multilevel Sequential Monte Carlo with Dimension-Independent
  Likelihood-Informed Proposals
Multilevel Sequential Monte Carlo with Dimension-Independent Likelihood-Informed Proposals
A. Beskos
Ajay Jasra
K. Law
Youssef Marzouk
Yan Zhou
61
42
0
15 Mar 2017
Unbiased estimators and multilevel Monte Carlo
Unbiased estimators and multilevel Monte Carlo
M. Vihola
50
69
0
03 Dec 2015
Multilevel Sequential Monte Carlo Samplers
Multilevel Sequential Monte Carlo Samplers
A. Beskos
Ajay Jasra
K. Law
Raúl Tempone
Yan Zhou
81
104
0
25 Mar 2015
Uncertainty quantification and weak approximation of an elliptic inverse
  problem
Uncertainty quantification and weak approximation of an elliptic inverse problem
Masoumeh Dashti
Andrew M. Stuart
66
102
0
01 Feb 2011
A general method for debiasing a Monte Carlo estimator
A general method for debiasing a Monte Carlo estimator
D. McLeish
119
115
0
12 May 2010
1