ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.03747
30
23
v1v2 (latest)

Unbiased Filtering of a Class of Partially Observed Diffusions

10 February 2020
Ajay Jasra
K. Law
Fangyuan Yu
ArXiv (abs)PDFHTML
Abstract

In this article we consider a Monte Carlo-based method to filter partially observed diffusions observed at regular and discrete times. Given access only to Euler discretizations of the diffusion process, we present a new procedure which can return online estimates of the filtering distribution with no discretization bias and finite variance. Our approach is based upon a novel double application of the randomization methods of Rhee & Glynn (2015) along with the multilevel particle filter (MLPF) approach of Jasra et al (2017). A numerical comparison of our new approach with the MLPF, on a single processor, shows that similar errors are possible for a mild increase in computational cost. However, the new method scales strongly to arbitrarily many processors.

View on arXiv
Comments on this paper