Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.04630
Cited By
Lagrangian Neural Networks
10 March 2020
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Lagrangian Neural Networks"
50 / 103 papers shown
Title
Lagrangian Density Space-Time Deep Neural Network Topology
B. Bishnoi
PINN
22
1
0
30 Jun 2022
Do Residual Neural Networks discretize Neural Ordinary Differential Equations?
Michael E. Sander
Pierre Ablin
Gabriel Peyré
32
25
0
29 May 2022
Machine Learning for Microcontroller-Class Hardware: A Review
Swapnil Sayan Saha
S. Sandha
Mani B. Srivastava
24
118
0
29 May 2022
Leveraging Stochastic Predictions of Bayesian Neural Networks for Fluid Simulations
Maximilian Mueller
Robin Greif
Frank Jenko
Nils Thuerey
24
3
0
02 May 2022
Neural Implicit Representations for Physical Parameter Inference from a Single Video
Florian Hofherr
Lukas Koestler
Florian Bernard
Daniel Cremers
AI4CE
37
9
0
29 Apr 2022
DiffMD: A Geometric Diffusion Model for Molecular Dynamics Simulations
Fang Wu
Stan Z. Li
DiffM
26
31
0
19 Apr 2022
A posteriori learning for quasi-geostrophic turbulence parametrization
Hugo Frezat
Julien Le Sommer
Ronan Fablet
G. Balarac
Redouane Lguensat
27
56
0
08 Apr 2022
When Physics Meets Machine Learning: A Survey of Physics-Informed Machine Learning
Chuizheng Meng
Sungyong Seo
Defu Cao
Sam Griesemer
Yan Liu
PINN
AI4CE
42
57
0
31 Mar 2022
Investigating Compounding Prediction Errors in Learned Dynamics Models
Nathan Lambert
K. Pister
Roberto Calandra
AI4CE
14
27
0
17 Mar 2022
Neural Ordinary Differential Equations for Nonlinear System Identification
Aowabin Rahman
Ján Drgoňa
Aaron Tuor
J. Strube
25
22
0
28 Feb 2022
Input-to-State Stable Neural Ordinary Differential Equations with Applications to Transient Modeling of Circuits
Alan Yang
J. Xiong
Maxim Raginsky
E. Rosenbaum
AI4TS
18
4
0
14 Feb 2022
Robust Hybrid Learning With Expert Augmentation
Antoine Wehenkel
Jens Behrmann
Hsiang Hsu
Guillermo Sapiro
Gilles Louppe and
J. Jacobsen
26
8
0
08 Feb 2022
Symplectic Momentum Neural Networks -- Using Discrete Variational Mechanics as a prior in Deep Learning
Saul Santos
Monica Ekal
R. Ventura
32
5
0
20 Jan 2022
Taylor-Lagrange Neural Ordinary Differential Equations: Toward Fast Training and Evaluation of Neural ODEs
Franck Djeumou
Cyrus Neary
Eric Goubault
S. Putot
Ufuk Topcu
AI4TS
30
18
0
14 Jan 2022
Constraint-based graph network simulator
Yulia Rubanova
Alvaro Sanchez-Gonzalez
Tobias Pfaff
Peter W. Battaglia
PINN
AI4CE
32
28
0
16 Dec 2021
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
73
26
0
06 Dec 2021
Characteristic Neural Ordinary Differential Equations
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
29
3
0
25 Nov 2021
Physics-enhanced Neural Networks in the Small Data Regime
Jonas Eichelsdörfer
Sebastian Kaltenbach
P. Koutsourelakis
AI4CE
PINN
14
5
0
19 Nov 2021
Climate Modeling with Neural Diffusion Equations
JeeHyun Hwang
Jeongwhan Choi
Hwan-Kyu Choi
Kookjin Lee
Dongeun Lee
Noseong Park
DiffM
24
22
0
11 Nov 2021
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
42
8
0
10 Nov 2021
On the Stochastic Stability of Deep Markov Models
Ján Drgoňa
Sayak Mukherjee
Jiaxin Zhang
Frank Liu
M. Halappanavar
BDL
19
5
0
08 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
33
93
0
02 Nov 2021
A Differentiable Newton-Euler Algorithm for Real-World Robotics
M. Lutter
Vallijah Subasri
Joe Watson
Frank Rudzicz
24
7
0
24 Oct 2021
One-Shot Transfer Learning of Physics-Informed Neural Networks
Shaan Desai
M. Mattheakis
H. Joy
P. Protopapas
Stephen J. Roberts
PINN
AI4CE
27
58
0
21 Oct 2021
Lagrangian Neural Network with Differentiable Symmetries and Relational Inductive Bias
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
AI4CE
47
4
0
07 Oct 2021
Neural Network Verification in Control
M. Everett
AAML
34
16
0
30 Sep 2021
Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning
Ziming Liu
Yunyue Chen
Yuanqi Du
Max Tegmark
PINN
AI4CE
40
22
0
28 Sep 2021
Machine-learning hidden symmetries
Ziming Liu
Max Tegmark
48
52
0
20 Sep 2021
Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling
Kookjin Lee
Nathaniel Trask
P. Stinis
32
25
0
11 Sep 2021
Characterizing possible failure modes in physics-informed neural networks
Aditi S. Krishnapriyan
A. Gholami
Shandian Zhe
Robert M. Kirby
Michael W. Mahoney
PINN
AI4CE
33
610
0
02 Sep 2021
Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems
Shaan Desai
M. Mattheakis
David Sondak
P. Protopapas
Stephen J. Roberts
AI4CE
30
43
0
16 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
39
64
0
02 Jul 2021
Machine learning structure preserving brackets for forecasting irreversible processes
Kookjin Lee
Nathaniel Trask
P. Stinis
AI4CE
44
42
0
23 Jun 2021
Symplectic Learning for Hamiltonian Neural Networks
M. David
Florian Méhats
24
34
0
22 Jun 2021
Stateful ODE-Nets using Basis Function Expansions
A. Queiruga
N. Benjamin Erichson
Liam Hodgkinson
Michael W. Mahoney
27
16
0
21 Jun 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
GEM: Group Enhanced Model for Learning Dynamical Control Systems
Philippe Hansen-Estruch
Wenling Shang
Lerrel Pinto
Pieter Abbeel
Stas Tiomkin
AI4CE
27
2
0
07 Apr 2021
Adaptable Hamiltonian neural networks
Chen-Di Han
Bryan Glaz
Mulugeta Haile
Y. Lai
AI4TS
30
25
0
25 Feb 2021
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
Naoya Takeishi
Alexandros Kalousis
DRL
AI4CE
30
54
0
25 Feb 2021
Learning Contact Dynamics using Physically Structured Neural Networks
Andreas Hochlehnert
Alexander Terenin
Steindór Sæmundsson
M. Deisenroth
19
16
0
22 Feb 2021
Meta-Learning Dynamics Forecasting Using Task Inference
Rui Wang
Robin G. Walters
Rose Yu
OOD
AI4TS
AI4CE
24
31
0
20 Feb 2021
Extending Lagrangian and Hamiltonian Neural Networks with Differentiable Contact Models
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
52
34
0
12 Feb 2021
Neural Dynamic Policies for End-to-End Sensorimotor Learning
Shikhar Bahl
Mustafa Mukadam
Abhinav Gupta
Deepak Pathak
13
83
0
04 Dec 2020
Dissipative Deep Neural Dynamical Systems
Ján Drgoňa
Soumya Vasisht
Aaron Tuor
D. Vrabie
21
7
0
26 Nov 2020
Differentiable Physics Models for Real-world Offline Model-based Reinforcement Learning
M. Lutter
Johannes Silberbauer
Joe Watson
Jan Peters
OffRL
29
33
0
03 Nov 2020
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting
Yuan Yin
Vincent Le Guen
Jérémie Donà
Emmanuel de Bézenac
Ibrahim Ayed
Nicolas Thome
Patrick Gallinari
AI4CE
PINN
30
132
0
09 Oct 2020
TorchDyn: A Neural Differential Equations Library
Michael Poli
Stefano Massaroli
Atsushi Yamashita
Hajime Asama
Jinkyoo Park
AI4CE
19
24
0
20 Sep 2020
Interpretable Sequence Learning for COVID-19 Forecasting
Sercan Ö. Arik
Chun-Liang Li
Jinsung Yoon
Rajarishi Sinha
Arkady Epshteyn
...
Martin Nikoltchev
Yash Sonthalia
Hootan Nakhost
Elli Kanal
Tomas Pfister
AI4TS
20
83
0
03 Aug 2020
Learning Physical Constraints with Neural Projections
Shuqi Yang
Xingzhe He
Bo Zhu
3DV
AI4CE
41
25
0
23 Jun 2020
Lipschitz Recurrent Neural Networks
N. Benjamin Erichson
Omri Azencot
A. Queiruga
Liam Hodgkinson
Michael W. Mahoney
30
107
0
22 Jun 2020
Previous
1
2
3
Next