ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.04299
  4. Cited By
Discovering Symmetry Invariants and Conserved Quantities by Interpreting
  Siamese Neural Networks

Discovering Symmetry Invariants and Conserved Quantities by Interpreting Siamese Neural Networks

9 March 2020
S. J. Wetzel
R. Melko
Joseph Scott
Maysum Panju
Vijay Ganesh
ArXivPDFHTML

Papers citing "Discovering Symmetry Invariants and Conserved Quantities by Interpreting Siamese Neural Networks"

22 / 22 papers shown
Title
Adiabatic Fine-Tuning of Neural Quantum States Enables Detection of Phase Transitions in Weight Space
Adiabatic Fine-Tuning of Neural Quantum States Enables Detection of Phase Transitions in Weight Space
Vinicius Hernandes
Thomas Spriggs
Saqar Khaleefah
E. Greplova
52
1
0
21 Mar 2025
Closed-Form Interpretation of Neural Network Latent Spaces with Symbolic Gradients
Closed-Form Interpretation of Neural Network Latent Spaces with Symbolic Gradients
Zakaria Patel
S. J. Wetzel
25
2
0
09 Sep 2024
The R-mAtrIx Net
The R-mAtrIx Net
Shailesh Lal
Suvajit Majumder
E. Sobko
24
5
0
14 Apr 2023
Fluctuation based interpretable analysis scheme for quantum many-body
  snapshots
Fluctuation based interpretable analysis scheme for quantum many-body snapshots
Henning Schlomer
A. Bohrdt
24
4
0
12 Apr 2023
Discovering Sparse Representations of Lie Groups with Machine Learning
Discovering Sparse Representations of Lie Groups with Machine Learning
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Alexander Roman
Eyup B. Unlu
Sarunas Verner
35
10
0
10 Feb 2023
Oracle-Preserving Latent Flows
Oracle-Preserving Latent Flows
Alexander Roman
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
DRL
44
5
0
02 Feb 2023
Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
  from First Principles
Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras from First Principles
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Alexander Roman
Eyup B. Unlu
Sarunas Verner
AI4CE
36
22
0
13 Jan 2023
A tradeoff between universality of equivariant models and learnability
  of symmetries
A tradeoff between universality of equivariant models and learnability of symmetries
Vasco Portilheiro
40
2
0
17 Oct 2022
Discovering Conservation Laws using Optimal Transport and Manifold
  Learning
Discovering Conservation Laws using Optimal Transport and Manifold Learning
Peter Y. Lu
Rumen Dangovski
M. Soljavcić
27
17
0
31 Aug 2022
Learning quantum symmetries with interactive quantum-classical
  variational algorithms
Learning quantum symmetries with interactive quantum-classical variational algorithms
Jonathan Z. Lu
R. A. Bravo
Kaiying Hou
Gebremedhin A. Dagnew
S. Yelin
K. Najafi
40
3
0
23 Jun 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and
  Vibroacoustic
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
37
84
0
13 Apr 2022
On scientific understanding with artificial intelligence
On scientific understanding with artificial intelligence
Mario Krenn
R. Pollice
S. Guo
Matteo Aldeghi
Alba Cervera-Lierta
...
Florian Hase
A. Jinich
AkshatKumar Nigam
Zhenpeng Yao
Alán Aspuru-Guzik
37
186
0
04 Apr 2022
AI Poincaré 2.0: Machine Learning Conservation Laws from
  Differential Equations
AI Poincaré 2.0: Machine Learning Conservation Laws from Differential Equations
Ziming Liu
Varun Madhavan
M. Tegmark
PINN
38
27
0
23 Mar 2022
Rotationally Equivariant Super-Resolution of Velocity Fields in
  Two-Dimensional Fluids Using Convolutional Neural Networks
Rotationally Equivariant Super-Resolution of Velocity Fields in Two-Dimensional Fluids Using Convolutional Neural Networks
Y. Yasuda
R. Onishi
27
6
0
22 Feb 2022
Noether Networks: Meta-Learning Useful Conserved Quantities
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
75
27
0
06 Dec 2021
Surrogate- and invariance-boosted contrastive learning for data-scarce
  applications in science
Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science
Charlotte Loh
T. Christensen
Rumen Dangovski
Samuel Kim
Marin Soljacic
32
17
0
15 Oct 2021
Discovering conservation laws from trajectories via machine learning
Discovering conservation laws from trajectories via machine learning
Seungwoong Ha
Hawoong Jeong
PINN
AI4CE
26
10
0
08 Feb 2021
Twin Neural Network Regression
Twin Neural Network Regression
S. J. Wetzel
Kevin Ryczko
R. Melko
Isaac Tamblyn
UQCV
28
11
0
29 Dec 2020
Scientific intuition inspired by machine learning generated hypotheses
Scientific intuition inspired by machine learning generated hypotheses
Pascal Friederich
Mario Krenn
Isaac Tamblyn
Alán Aspuru-Guzik
AI4CE
24
34
0
27 Oct 2020
Detecting Symmetries with Neural Networks
Detecting Symmetries with Neural Networks
Sven Krippendorf
Marc Syvaeri
23
61
0
30 Mar 2020
Entanglement-guided architectures of machine learning by quantum tensor
  network
Entanglement-guided architectures of machine learning by quantum tensor network
Yuhan Liu
Xiao Zhang
M. Lewenstein
Shi-Ju Ran
28
32
0
24 Mar 2018
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1