ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03551
  4. Cited By
STD-Net: Structure-preserving and Topology-adaptive Deformation Network
  for 3D Reconstruction from a Single Image

STD-Net: Structure-preserving and Topology-adaptive Deformation Network for 3D Reconstruction from a Single Image

7 March 2020
Aihua Mao
Canglan Dai
Lin Gao
Ying He
Yong-jin Liu
    3DV
    3DPC
ArXivPDFHTML

Papers citing "STD-Net: Structure-preserving and Topology-adaptive Deformation Network for 3D Reconstruction from a Single Image"

2 / 2 papers shown
Title
3D-CODED : 3D Correspondences by Deep Deformation
3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
132
325
0
13 Jun 2018
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
186
1,941
0
24 Oct 2016
1