Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.01907
Cited By
Turbulence Enrichment using Physics-informed Generative Adversarial Networks
4 March 2020
Akshay Subramaniam
Man Long Wong
Raunak Borker
S. Nimmagadda
S. Lele
GAN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Turbulence Enrichment using Physics-informed Generative Adversarial Networks"
9 / 9 papers shown
Title
SuperBench: A Super-Resolution Benchmark Dataset for Scientific Machine Learning
Pu Ren
N. Benjamin Erichson
Shashank Subramanian
Omer San
Z. Lukić
Michael W. Mahoney
Michael W. Mahoney
52
13
0
24 Jun 2023
PhySRNet: Physics informed super-resolution network for application in computational solid mechanics
Rajat Arora
AI4CE
35
10
0
30 Jun 2022
Machine Learning-Accelerated Computational Solid Mechanics: Application to Linear Elasticity
Rajat Arora
AI4CE
26
7
0
16 Dec 2021
Generative Modeling of Turbulence
Claudia Drygala
Benjamin Winhart
F. Mare
Hanno Gottschalk
GAN
AI4CE
27
38
0
05 Dec 2021
Adversarial sampling of unknown and high-dimensional conditional distributions
M. Hassanaly
Andrew Glaws
Karen Stengel
Ryan N. King
GAN
27
21
0
08 Nov 2021
Performance and accuracy assessments of an incompressible fluid solver coupled with a deep Convolutional Neural Network
Ekhi Ajuria Illarramendi
M. Bauerheim
B. Cuenot
38
19
0
20 Sep 2021
Learning the structure of wind: A data-driven nonlocal turbulence model for the atmospheric boundary layer
B. Keith
U. Khristenko
B. Wohlmuth
33
7
0
23 Jul 2021
Point-Cloud Deep Learning of Porous Media for Permeability Prediction
Ali Kashefi
T. Mukerji
3DPC
AI4CE
22
34
0
18 Jul 2021
Multi-fidelity Generative Deep Learning Turbulent Flows
N. Geneva
N. Zabaras
AI4CE
21
44
0
08 Jun 2020
1