ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.01227
  4. Cited By
Fast Predictive Uncertainty for Classification with Bayesian Deep
  Networks

Fast Predictive Uncertainty for Classification with Bayesian Deep Networks

2 March 2020
Marius Hobbhahn
Agustinus Kristiadi
Philipp Hennig
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Fast Predictive Uncertainty for Classification with Bayesian Deep Networks"

27 / 27 papers shown
Title
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
Kaizheng Wang
Keivan K1 Shariatmadar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
David Moens
Hans Hallez
UQCV
BDL
230
13
0
28 Jan 2025
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
205
312
0
28 Jun 2021
Generalized Bayesian Posterior Expectation Distillation for Deep Neural
  Networks
Generalized Bayesian Posterior Expectation Distillation for Deep Neural Networks
Meet P. Vadera
B. Jalaeian
Benjamin M. Marlin
BDL
FedML
UQCV
45
20
0
16 May 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
77
286
0
24 Feb 2020
On Last-Layer Algorithms for Classification: Decoupling Representation
  from Uncertainty Estimation
On Last-Layer Algorithms for Classification: Decoupling Representation from Uncertainty Estimation
N. Brosse
C. Riquelme
Alice Martin
Sylvain Gelly
Eric Moulines
BDL
OOD
UQCV
84
33
0
22 Jan 2020
BackPACK: Packing more into backprop
BackPACK: Packing more into backprop
Felix Dangel
Frederik Kunstner
Philipp Hennig
ODL
86
103
0
23 Dec 2019
Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty
  and Adversarial Robustness
Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness
A. Malinin
Mark Gales
UQCV
AAML
67
175
0
31 May 2019
Ensemble Distribution Distillation
Ensemble Distribution Distillation
A. Malinin
Bruno Mlodozeniec
Mark Gales
UQCV
63
234
0
30 Apr 2019
Why ReLU networks yield high-confidence predictions far away from the
  training data and how to mitigate the problem
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem
Matthias Hein
Maksym Andriushchenko
Julian Bitterwolf
OODD
167
558
0
13 Dec 2018
Deep Learning for Classical Japanese Literature
Deep Learning for Classical Japanese Literature
Tarin Clanuwat
Mikel Bober-Irizar
A. Kitamoto
Alex Lamb
Kazuaki Yamamoto
David R Ha
93
709
0
03 Dec 2018
Evaluating Uncertainty Quantification in End-to-End Autonomous Driving
  Control
Evaluating Uncertainty Quantification in End-to-End Autonomous Driving Control
Rhiannon Michelmore
Marta Kwiatkowska
Y. Gal
UQCV
45
102
0
16 Nov 2018
Deterministic Variational Inference for Robust Bayesian Neural Networks
Deterministic Variational Inference for Robust Bayesian Neural Networks
Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
UQCV
AAML
BDL
75
16
0
09 Oct 2018
Evidential Deep Learning to Quantify Classification Uncertainty
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
177
991
0
05 Jun 2018
Predictive Uncertainty Estimation via Prior Networks
Predictive Uncertainty Estimation via Prior Networks
A. Malinin
Mark Gales
UD
BDL
EDL
UQCV
PER
183
914
0
28 Feb 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
276
8,878
0
25 Aug 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
155
3,451
0
07 Oct 2016
One-vs-Each Approximation to Softmax for Scalable Estimation of
  Probabilities
One-vs-Each Approximation to Softmax for Scalable Estimation of Probabilities
Michalis K. Titsias
UQCV
58
54
0
23 Sep 2016
Structured and Efficient Variational Deep Learning with Matrix Gaussian
  Posteriors
Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors
Christos Louizos
Max Welling
BDL
60
257
0
15 Mar 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,814
0
10 Dec 2015
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
240
885
0
06 Nov 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
185
1,886
0
20 May 2015
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
99
1,011
0
19 Mar 2015
Scalable Bayesian Optimization Using Deep Neural Networks
Scalable Bayesian Optimization Using Deep Neural Networks
Jasper Snoek
Oren Rippel
Kevin Swersky
Ryan Kiros
N. Satish
N. Sundaram
Md. Mostofa Ali Patwary
P. Prabhat
Ryan P. Adams
BDL
UQCV
89
1,043
0
19 Feb 2015
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
  Unrecognizable Images
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
158
3,271
0
05 Dec 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.7K
39,509
0
01 Sep 2014
Kernel Topic Models
Kernel Topic Models
Philipp Hennig
David H. Stern
R. Herbrich
T. Graepel
BDL
57
63
0
21 Oct 2011
Variational inference for large-scale models of discrete choice
Variational inference for large-scale models of discrete choice
Michael Braun
Jon D. McAuliffe
137
186
0
15 Dec 2007
1