Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.01054
Cited By
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime
2 March 2020
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
Florent Krzakala
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime"
31 / 31 papers shown
Title
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
106
0
0
06 May 2025
The Double Descent Behavior in Two Layer Neural Network for Binary Classification
Chathurika S Abeykoon
A. Beknazaryan
Hailin Sang
51
1
0
27 Apr 2025
Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer
Blake Bordelon
C. Pehlevan
AI4CE
61
1
0
04 Feb 2025
How more data can hurt: Instability and regularization in next-generation reservoir computing
Yuanzhao Zhang
Edmilson Roque dos Santos
Sean P. Cornelius
77
2
0
28 Jan 2025
Investigating the Impact of Model Complexity in Large Language Models
Jing Luo
Huiyuan Wang
Weiran Huang
34
0
0
01 Oct 2024
Random Matrix Analysis to Balance between Supervised and Unsupervised Learning under the Low Density Separation Assumption
Vasilii Feofanov
Malik Tiomoko
Aladin Virmaux
31
5
0
20 Oct 2023
Quantifying lottery tickets under label noise: accuracy, calibration, and complexity
V. Arora
Daniele Irto
Sebastian Goldt
G. Sanguinetti
34
2
0
21 Jun 2023
Gibbs-Based Information Criteria and the Over-Parameterized Regime
Haobo Chen
Yuheng Bu
Greg Wornell
21
1
0
08 Jun 2023
Double Descent of Discrepancy: A Task-, Data-, and Model-Agnostic Phenomenon
Yi-Xiao Luo
Bin Dong
26
0
0
25 May 2023
Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation
Jin-Hong Du
Pratik V. Patil
Arun K. Kuchibhotla
16
11
0
25 Apr 2023
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
36
0
0
24 Mar 2023
Pathologies of Predictive Diversity in Deep Ensembles
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
John P. Cunningham
UQCV
38
13
0
01 Feb 2023
Gradient flow in the gaussian covariate model: exact solution of learning curves and multiple descent structures
Antione Bodin
N. Macris
31
4
0
13 Dec 2022
Sparse Double Descent: Where Network Pruning Aggravates Overfitting
Zhengqi He
Zeke Xie
Quanzhi Zhu
Zengchang Qin
69
27
0
17 Jun 2022
Regularization-wise double descent: Why it occurs and how to eliminate it
Fatih Yilmaz
Reinhard Heckel
25
11
0
03 Jun 2022
Sharp Asymptotics of Kernel Ridge Regression Beyond the Linear Regime
Hong Hu
Yue M. Lu
49
15
0
13 May 2022
Generalization Through The Lens Of Leave-One-Out Error
Gregor Bachmann
Thomas Hofmann
Aurélien Lucchi
44
7
0
07 Mar 2022
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
C. Pehlevan
BDL
MLT
28
26
0
01 Mar 2022
Understanding the bias-variance tradeoff of Bregman divergences
Ben Adlam
Neha Gupta
Zelda E. Mariet
Jamie Smith
UQCV
UD
15
6
0
08 Feb 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning
Yuege Xie
Bobby Shi
Hayden Schaeffer
Rachel A. Ward
78
9
0
07 Dec 2021
Multi-scale Feature Learning Dynamics: Insights for Double Descent
Mohammad Pezeshki
Amartya Mitra
Yoshua Bengio
Guillaume Lajoie
58
25
0
06 Dec 2021
Model, sample, and epoch-wise descents: exact solution of gradient flow in the random feature model
A. Bodin
N. Macris
29
13
0
22 Oct 2021
Learning through atypical "phase transitions" in overparameterized neural networks
Carlo Baldassi
Clarissa Lauditi
Enrico M. Malatesta
R. Pacelli
Gabriele Perugini
R. Zecchina
26
26
0
01 Oct 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
29
71
0
06 Sep 2021
Double Descent and Other Interpolation Phenomena in GANs
Lorenzo Luzi
Yehuda Dar
Richard Baraniuk
18
5
0
07 Jun 2021
Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition
Ben Adlam
Jeffrey Pennington
UD
26
92
0
04 Nov 2020
Geometric compression of invariant manifolds in neural nets
J. Paccolat
Leonardo Petrini
Mario Geiger
Kevin Tyloo
M. Wyart
MLT
49
34
0
22 Jul 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
34
32
0
18 Jun 2020
Spectra of the Conjugate Kernel and Neural Tangent Kernel for linear-width neural networks
Z. Fan
Zhichao Wang
29
72
0
25 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
34
172
0
23 Apr 2020
Implicit Regularization of Random Feature Models
Arthur Jacot
Berfin Simsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
18
82
0
19 Feb 2020
1