ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.00671
  4. Cited By
AutoPhase: Juggling HLS Phase Orderings in Random Forests with Deep
  Reinforcement Learning
v1v2 (latest)

AutoPhase: Juggling HLS Phase Orderings in Random Forests with Deep Reinforcement Learning

2 March 2020
Qijing Huang
Ameer Haj-Ali
William S. Moses
J. Xiang
Ion Stoica
Krste Asanović
J. Wawrzynek
ArXiv (abs)PDFHTML

Papers citing "AutoPhase: Juggling HLS Phase Orderings in Random Forests with Deep Reinforcement Learning"

12 / 12 papers shown
Title
Towards VM Rescheduling Optimization Through Deep Reinforcement Learning
Xianzhong Ding
Yunkai Zhang
Binbin Chen
Donghao Ying
Tieying Zhang
Jianjun Chen
Lei Zhang
Alberto Cerpa
Wan Du
VLM
139
2
0
23 May 2025
Ansor: Generating High-Performance Tensor Programs for Deep Learning
Ansor: Generating High-Performance Tensor Programs for Deep Learning
Lianmin Zheng
Chengfan Jia
Minmin Sun
Zhao Wu
Cody Hao Yu
...
Jun Yang
Danyang Zhuo
Koushik Sen
Joseph E. Gonzalez
Ion Stoica
144
403
0
11 Jun 2020
NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement
  Learning
NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning
Ameer Haj-Ali
Nesreen Ahmed
Theodore L. Willke
Sophia Shao
Krste Asanović
Ion Stoica
63
101
0
20 Sep 2019
AutoPhase: Compiler Phase-Ordering for High Level Synthesis with Deep
  Reinforcement Learning
AutoPhase: Compiler Phase-Ordering for High Level Synthesis with Deep Reinforcement Learning
Ameer Haj-Ali
Qijing Huang
William S. Moses
J. Xiang
Ion Stoica
Krste Asanović
J. Wawrzynek
42
36
0
15 Jan 2019
Machine Learning in Compiler Optimisation
Machine Learning in Compiler Optimisation
Zheng Wang
Michael F. P. O'Boyle
VLM
53
77
0
09 May 2018
RLlib: Abstractions for Distributed Reinforcement Learning
RLlib: Abstractions for Distributed Reinforcement Learning
Eric Liang
Richard Liaw
Philipp Moritz
Robert Nishihara
Roy Fox
Ken Goldberg
Joseph E. Gonzalez
Michael I. Jordan
Ion Stoica
OffRLAI4CE
72
175
0
26 Dec 2017
Improving Exploration in Evolution Strategies for Deep Reinforcement
  Learning via a Population of Novelty-Seeking Agents
Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents
Edoardo Conti
Vashisht Madhavan
F. Such
Joel Lehman
Kenneth O. Stanley
Jeff Clune
80
349
0
18 Dec 2017
Ray: A Distributed Framework for Emerging AI Applications
Ray: A Distributed Framework for Emerging AI Applications
Philipp Moritz
Robert Nishihara
Stephanie Wang
Alexey Tumanov
Richard Liaw
...
Melih Elibol
Zongheng Yang
William Paul
Michael I. Jordan
Ion Stoica
GNN
110
1,268
0
16 Dec 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
571
19,315
0
20 Jul 2017
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Tim Salimans
Jonathan Ho
Xi Chen
Szymon Sidor
Ilya Sutskever
122
1,544
0
10 Mar 2017
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
210
8,882
0
04 Feb 2016
A Reduction of Imitation Learning and Structured Prediction to No-Regret
  Online Learning
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
Stéphane Ross
Geoffrey J. Gordon
J. Andrew Bagnell
OffRL
261
3,238
0
02 Nov 2010
1