ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.00609
  4. Cited By
Optimizing Dynamic Trajectories for Robustness to Disturbances Using
  Polytopic Projections

Optimizing Dynamic Trajectories for Robustness to Disturbances Using Polytopic Projections

1 March 2020
Henrique Ferrolho
W. Merkt
V. Ivan
W. Wolfslag
S. Vijayakumar
ArXivPDFHTML

Papers citing "Optimizing Dynamic Trajectories for Robustness to Disturbances Using Polytopic Projections"

8 / 8 papers shown
Title
Whole-body End-Effector Pose Tracking
Whole-body End-Effector Pose Tracking
Tifanny Portela
Andrei Cramariuc
Mayank Mittal
Marco Hutter
92
3
0
24 Sep 2024
Optimisation of Body-ground Contact for Augmenting Whole-Body
  Loco-manipulation of Quadruped Robots
Optimisation of Body-ground Contact for Augmenting Whole-Body Loco-manipulation of Quadruped Robots
W. Wolfslag
C. McGreavy
Guiyang Xin
Carlo Tiseo
S. Vijayakumar
Zhibin Li
34
31
0
24 Feb 2020
Crocoddyl: An Efficient and Versatile Framework for Multi-Contact
  Optimal Control
Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control
Carlos Mastalli
Rohan Budhiraja
W. Merkt
Guilhem Saurel
Bilal Hammoud
M. Naveau
Justin Carpentier
Ludovic Righetti
S. Vijayakumar
Nicolas Mansard
67
293
0
11 Sep 2019
Residual Force Polytope: Admissible Task-Space Forces of Dynamic
  Trajectories
Residual Force Polytope: Admissible Task-Space Forces of Dynamic Trajectories
Henrique Ferrolho
W. Merkt
Carlo Tiseo
S. Vijayakumar
37
8
0
15 Aug 2019
Bilevel Optimization for Planning through Contact: A Semidirect Method
Bilevel Optimization for Planning through Contact: A Semidirect Method
Benoit Landry
Joseph Lorenzetti
Zachary Manchester
Marco Pavone
28
15
0
10 Jun 2019
A Differentiable Augmented Lagrangian Method for Bilevel Nonlinear
  Optimization
A Differentiable Augmented Lagrangian Method for Bilevel Nonlinear Optimization
Benoit Landry
Zachary Manchester
Marco Pavone
53
20
0
08 Feb 2019
Application of Wrench based Feasibility Analysis to the Online
  Trajectory Optimization of Legged Robots
Application of Wrench based Feasibility Analysis to the Online Trajectory Optimization of Legged Robots
Romeo Orsolino
Michele Focchi
Carlos Mastalli
Hongkai Dai
D. Caldwell
Claudio Semini
42
53
0
19 Dec 2017
A Family of Iterative Gauss-Newton Shooting Methods for Nonlinear
  Optimal Control
A Family of Iterative Gauss-Newton Shooting Methods for Nonlinear Optimal Control
Markus Giftthaler
Michael Neunert
M. Stäuble
J. Buchli
Moritz Diehl
55
101
0
29 Nov 2017
1