Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.12410
Cited By
On Biased Compression for Distributed Learning
27 February 2020
Aleksandr Beznosikov
Samuel Horváth
Peter Richtárik
M. Safaryan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Biased Compression for Distributed Learning"
39 / 39 papers shown
Title
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
44
0
0
11 Nov 2024
Trustworthiness of Stochastic Gradient Descent in Distributed Learning
Hongyang Li
Caesar Wu
Mohammed Chadli
Said Mammar
Pascal Bouvry
66
1
0
28 Oct 2024
Communication-efficient Vertical Federated Learning via Compressed Error Feedback
Pedro Valdeira
João Xavier
Cláudia Soares
Yuejie Chi
FedML
59
4
0
20 Jun 2024
LoCoDL: Communication-Efficient Distributed Learning with Local Training and Compression
Laurent Condat
Artavazd Maranjyan
Peter Richtárik
83
5
0
07 Mar 2024
Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation
Sobihan Surendran
Antoine Godichon-Baggioni
Adeline Fermanian
Sylvain Le Corff
67
1
0
05 Feb 2024
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
52
7
0
12 May 2023
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
78
46
0
07 Oct 2021
EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback
Peter Richtárik
Igor Sokolov
Ilyas Fatkhullin
48
142
0
09 Jun 2021
Accordion: Adaptive Gradient Communication via Critical Learning Regime Identification
Saurabh Agarwal
Hongyi Wang
Kangwook Lee
Shivaram Venkataraman
Dimitris Papailiopoulos
47
25
0
29 Oct 2020
Linearly Converging Error Compensated SGD
Eduard A. Gorbunov
D. Kovalev
Dmitry Makarenko
Peter Richtárik
189
78
0
23 Oct 2020
On the Convergence of SGD with Biased Gradients
Ahmad Ajalloeian
Sebastian U. Stich
31
85
0
31 Jul 2020
Unified Analysis of Stochastic Gradient Methods for Composite Convex and Smooth Optimization
Ahmed Khaled
Othmane Sebbouh
Nicolas Loizou
Robert Mansel Gower
Peter Richtárik
78
46
0
20 Jun 2020
A Better Alternative to Error Feedback for Communication-Efficient Distributed Learning
Samuel Horváth
Peter Richtárik
35
61
0
19 Jun 2020
A Unified Analysis of Stochastic Gradient Methods for Nonconvex Federated Optimization
Zhize Li
Peter Richtárik
FedML
41
36
0
12 Jun 2020
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
369
41,106
0
28 May 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
94
6,177
0
10 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
113
42,038
0
03 Dec 2019
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Sai Praneeth Karimireddy
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
37
345
0
14 Oct 2019
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
Zhenzhong Lan
Mingda Chen
Sebastian Goodman
Kevin Gimpel
Piyush Sharma
Radu Soricut
SSL
AIMat
234
6,420
0
26 Sep 2019
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
44
432
0
10 Sep 2019
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
79
4,470
0
21 Aug 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
50
320
0
31 May 2019
A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
72
143
0
27 May 2019
Natural Compression for Distributed Deep Learning
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
30
151
0
27 May 2019
Error Feedback Fixes SignSGD and other Gradient Compression Schemes
Sai Praneeth Karimireddy
Quentin Rebjock
Sebastian U. Stich
Martin Jaggi
41
496
0
28 Jan 2019
Distributed Learning with Compressed Gradient Differences
Konstantin Mishchenko
Eduard A. Gorbunov
Martin Takáč
Peter Richtárik
74
197
0
26 Jan 2019
Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron
Sharan Vaswani
Francis R. Bach
Mark Schmidt
45
297
0
16 Oct 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
782
93,936
0
11 Oct 2018
The Convergence of Sparsified Gradient Methods
Dan Alistarh
Torsten Hoefler
M. Johansson
Sarit Khirirat
Nikola Konstantinov
Cédric Renggli
86
491
0
27 Sep 2018
Sparsified SGD with Memory
Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
60
743
0
20 Sep 2018
Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization
Jiaxiang Wu
Weidong Huang
Junzhou Huang
Tong Zhang
49
234
0
21 Jun 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
536
7,080
0
20 Apr 2018
3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning
Hyeontaek Lim
D. Andersen
M. Kaminsky
101
70
0
21 Feb 2018
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
97
1,394
0
05 Dec 2017
TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning
W. Wen
Cong Xu
Feng Yan
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
120
985
0
22 May 2017
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
253
4,620
0
18 Oct 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
83
580
0
18 Mar 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
200
17,235
0
17 Feb 2016
Parallel Coordinate Descent Methods for Big Data Optimization
Peter Richtárik
Martin Takáč
76
487
0
04 Dec 2012
1