ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.12287
  4. Cited By
Deep Randomized Neural Networks

Deep Randomized Neural Networks

27 February 2020
Claudio Gallicchio
Simone Scardapane
    OOD
ArXivPDFHTML

Papers citing "Deep Randomized Neural Networks"

28 / 28 papers shown
Title
Emergence of Structure in Ensembles of Random Neural Networks
Emergence of Structure in Ensembles of Random Neural Networks
Luca Muscarnera
Luigi Loreti
Giovanni Todeschini
Alessio Fumagalli
Francesco Regazzoni
26
0
0
15 May 2025
Multilevel Interpretability Of Artificial Neural Networks: Leveraging
  Framework And Methods From Neuroscience
Multilevel Interpretability Of Artificial Neural Networks: Leveraging Framework And Methods From Neuroscience
Zhonghao He
Jascha Achterberg
Katie Collins
Kevin K. Nejad
Danyal Akarca
...
Chole Li
Kai J. Sandbrink
Stephen Casper
Anna Ivanova
Grace W. Lindsay
AI4CE
28
1
0
22 Aug 2024
The Hyperdimensional Transform for Distributional Modelling, Regression
  and Classification
The Hyperdimensional Transform for Distributional Modelling, Regression and Classification
Pieter Dewulf
B. De Baets
Michiel Stock
41
3
0
14 Nov 2023
Deep learning for dynamic graphs: models and benchmarks
Deep learning for dynamic graphs: models and benchmarks
Alessio Gravina
D. Bacciu
GNN
AI4CE
37
11
0
12 Jul 2023
Sampling weights of deep neural networks
Sampling weights of deep neural networks
Erik Lien Bolager
Iryna Burak
Chinmay Datar
Q. Sun
Felix Dietrich
BDL
UQCV
19
16
0
29 Jun 2023
Randomly Initialized Subnetworks with Iterative Weight Recycling
Randomly Initialized Subnetworks with Iterative Weight Recycling
Matt Gorbett
L. D. Whitley
26
4
0
28 Mar 2023
Neural Graph Revealers
Neural Graph Revealers
H. Shrivastava
Urszula Chajewska
BDL
31
6
0
27 Feb 2023
Coin Flipping Neural Networks
Coin Flipping Neural Networks
Yuval Sieradzki
Nitzan Hodos
Gal Yehuda
Assaf Schuster
UQCV
27
3
0
18 Jun 2022
PRANC: Pseudo RAndom Networks for Compacting deep models
PRANC: Pseudo RAndom Networks for Compacting deep models
Parsa Nooralinejad
Ali Abbasi
Soroush Abbasi Koohpayegani
Kossar Pourahmadi Meibodi
Rana Muhammad Shahroz Khan
Soheil Kolouri
Hamed Pirsiavash
DD
29
0
0
16 Jun 2022
On gradient descent training under data augmentation with on-line noisy
  copies
On gradient descent training under data augmentation with on-line noisy copies
K. Hagiwara
13
0
0
08 Jun 2022
Asymptotic Stability in Reservoir Computing
Asymptotic Stability in Reservoir Computing
Jonathan Dong
Erik Börve
M. Rafayelyan
M. Unser
14
5
0
07 Jun 2022
Physical Deep Learning with Biologically Plausible Training Method
Physical Deep Learning with Biologically Plausible Training Method
M. Nakajima
Katsuma Inoue
Kenji Tanaka
Yasuo Kuniyoshi
Toshikazu Hashimoto
Kohei Nakajima
AI4CE
26
3
0
01 Apr 2022
Euler State Networks: Non-dissipative Reservoir Computing
Euler State Networks: Non-dissipative Reservoir Computing
Claudio Gallicchio
17
2
0
17 Mar 2022
Random vector functional link network: recent developments,
  applications, and future directions
Random vector functional link network: recent developments, applications, and future directions
Anil Kumar Malik
Ruobin Gao
M. A. Ganaie
M. Tanveer
Ponnuthurai Nagaratnam Suganthan
14
104
0
13 Feb 2022
Eigenvalue Distribution of Large Random Matrices Arising in Deep Neural
  Networks: Orthogonal Case
Eigenvalue Distribution of Large Random Matrices Arising in Deep Neural Networks: Orthogonal Case
L. Pastur
19
5
0
12 Jan 2022
Learning Augmentation Distributions using Transformed Risk Minimization
Learning Augmentation Distributions using Transformed Risk Minimization
Evangelos Chatzipantazis
Stefanos Pertigkiozoglou
Kostas Daniilidis
Edgar Dobriban
38
15
0
16 Nov 2021
Hyperdimensional Computing for Efficient Distributed Classification with
  Randomized Neural Networks
Hyperdimensional Computing for Efficient Distributed Classification with Randomized Neural Networks
A. Rosato
Massimo Panella
Denis Kleyko
25
18
0
02 Jun 2021
Randomly Initialized Convolutional Neural Network for the Recognition of
  COVID-19 using X-ray Images
Randomly Initialized Convolutional Neural Network for the Recognition of COVID-19 using X-ray Images
Safa Ben Atitallah
Maha Driss
W. Boulila
Henda Ben Ghézala
30
42
0
17 May 2021
An Enhanced Randomly Initialized Convolutional Neural Network for
  Columnar Cactus Recognition in Unmanned Aerial Vehicle Imagery
An Enhanced Randomly Initialized Convolutional Neural Network for Columnar Cactus Recognition in Unmanned Aerial Vehicle Imagery
Safa Ben Atitallah
Maha Driss
W. Boulila
Anis Koubaa
Nesrine Atitallah
Henda Ben Ghézala
21
6
0
10 May 2021
Compressing 1D Time-Channel Separable Convolutions using Sparse Random
  Ternary Matrices
Compressing 1D Time-Channel Separable Convolutions using Sparse Random Ternary Matrices
Gonçalo Mordido
Matthijs Van Keirsbilck
A. Keller
30
6
0
31 Mar 2021
Cluster-based Input Weight Initialization for Echo State Networks
Cluster-based Input Weight Initialization for Echo State Networks
Peter Steiner
A. Jalalvand
P. Birkholz
18
13
0
08 Mar 2021
On the Post-hoc Explainability of Deep Echo State Networks for Time
  Series Forecasting, Image and Video Classification
On the Post-hoc Explainability of Deep Echo State Networks for Time Series Forecasting, Image and Video Classification
Alejandro Barredo Arrieta
S. Gil-Lopez
I. Laña
Miren Nekane Bilbao
Javier Del Ser
AI4TS
36
13
0
17 Feb 2021
Reservoir Transformers
Reservoir Transformers
Sheng Shen
Alexei Baevski
Ari S. Morcos
Kurt Keutzer
Michael Auli
Douwe Kiela
29
17
0
30 Dec 2020
Universal Approximation in Dropout Neural Networks
Universal Approximation in Dropout Neural Networks
O. Manita
M. Peletier
J. Portegies
J. Sanders
Albert Senen-Cerda
15
10
0
18 Dec 2020
On Random Matrices Arising in Deep Neural Networks: General I.I.D. Case
On Random Matrices Arising in Deep Neural Networks: General I.I.D. Case
L. Pastur
V. Slavin
CML
22
12
0
20 Nov 2020
Understanding Recurrent Neural Networks Using Nonequilibrium Response
  Theory
Understanding Recurrent Neural Networks Using Nonequilibrium Response Theory
S. H. Lim
24
16
0
19 Jun 2020
Reservoir Computing meets Recurrent Kernels and Structured Transforms
Reservoir Computing meets Recurrent Kernels and Structured Transforms
Jonathan Dong
Ruben Ohana
M. Rafayelyan
Florent Krzakala
TPM
29
18
0
12 Jun 2020
Randomized Policy Learning for Continuous State and Action MDPs
Randomized Policy Learning for Continuous State and Action MDPs
Hiteshi Sharma
Rahul Jain
16
1
0
08 Jun 2020
1