Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.11537
Cited By
ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA
26 February 2020
Ilyes Khemakhem
R. Monti
Diederik P. Kingma
Aapo Hyvarinen
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA"
24 / 24 papers shown
Title
Causality-Inspired Robustness for Nonlinear Models via Representation Learning
Marin Šola
Peter Bühlmann
Xinwei Shen
OOD
14
0
0
19 May 2025
Causal View of Time Series Imputation: Some Identification Results on Missing Mechanism
Ruichu Cai
Kaitao Zheng
Junxian Huang
Zijian Li
Zhengming Chen
Boyan Xu
Zhifeng Hao
AI4TS
CML
36
0
0
12 May 2025
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens
Samuele Bortolotti
Emanuele Marconato
Paolo Morettin
Andrea Passerini
Stefano Teso
66
2
0
16 Feb 2025
All or None: Identifiable Linear Properties of Next-token Predictors in Language Modeling
Emanuele Marconato
Sébastien Lachapelle
Sebastian Weichwald
Luigi Gresele
69
3
0
30 Oct 2024
Sparsity regularization via tree-structured environments for disentangled representations
Elliot Layne
Jason S. Hartford
Sébastien Lachapelle
Mathieu Blanchette
Dhanya Sridhar
OOD
CML
33
0
0
30 May 2024
Towards a Unified Framework of Contrastive Learning for Disentangled Representations
Stefan Matthes
Zhiwei Han
Hao Shen
42
4
0
08 Nov 2023
Causal Representation Learning Made Identifiable by Grouping of Observational Variables
H. Morioka
Aapo Hyvarinen
OOD
CML
BDL
38
9
0
24 Oct 2023
Subspace Identification for Multi-Source Domain Adaptation
Zijian Li
Ruichu Cai
Guan-Hong Chen
Boyang Sun
Zhifeng Hao
Kun Zhang
41
33
0
07 Oct 2023
Partial Identifiability for Domain Adaptation
Lingjing Kong
Shaoan Xie
Weiran Yao
Yujia Zheng
Guan-Hong Chen
P. Stojanov
Victor Akinwande
Kun Zhang
58
9
0
10 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
32
57
0
01 Jun 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
57
11
0
29 Jan 2023
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
41
11
0
07 Nov 2022
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
28
49
0
20 Jun 2022
Weakly Supervised Representation Learning with Sparse Perturbations
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
SSL
35
58
0
02 Jun 2022
CITRIS: Causal Identifiability from Temporal Intervened Sequences
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
46
102
0
07 Feb 2022
Unsupervised Learning of Compositional Energy Concepts
Yilun Du
Shuang Li
Yash Sharma
J. Tenenbaum
Igor Mordatch
CoGe
OCL
30
76
0
04 Nov 2021
Properties from Mechanisms: An Equivariance Perspective on Identifiable Representation Learning
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
34
38
0
29 Oct 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDL
OOD
CML
30
3
0
30 Sep 2021
Identifiable Energy-based Representations: An Application to Estimating Heterogeneous Causal Effects
Yao Zhang
Jeroen Berrevoets
M. Schaar
CML
38
6
0
06 Aug 2021
Causal Hidden Markov Model for Time Series Disease Forecasting
Jing Li
Botong Wu
Xinwei Sun
Yizhou Wang
CML
OOD
21
25
0
30 Mar 2021
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
238
211
0
17 Feb 2021
Causal Autoregressive Flows
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
CML
OOD
AI4CE
27
108
0
04 Nov 2020
Latent Causal Invariant Model
Xinwei Sun
Botong Wu
Xiangyu Zheng
Chang-Shu Liu
Wei Chen
Tao Qin
Tie-Yan Liu
OOD
CML
BDL
31
14
0
04 Nov 2020
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
35
104
0
03 Nov 2020
1