Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.10477
Cited By
Precise Tradeoffs in Adversarial Training for Linear Regression
24 February 2020
Adel Javanmard
Mahdi Soltanolkotabi
Hamed Hassani
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Precise Tradeoffs in Adversarial Training for Linear Regression"
36 / 36 papers shown
Title
LORE: Lagrangian-Optimized Robust Embeddings for Visual Encoders
Borna Khodabandeh
Amirabbas Afzali
Amirhossein Afsharrad
Seyed Shahabeddin Mousavi
Sanjay Lall
Sajjad Amini
Seyed-Mohsen Moosavi-Dezfooli
AAML
8
0
0
24 May 2025
Risk Analysis and Design Against Adversarial Actions
M. Campi
A. Carè
Luis G. Crespo
S. Garatti
Federico A. Ramponi
AAML
274
0
0
02 May 2025
A High Dimensional Statistical Model for Adversarial Training: Geometry and Trade-Offs
Kasimir Tanner
Matteo Vilucchio
Bruno Loureiro
Florent Krzakala
AAML
76
0
0
31 Dec 2024
Robust Feature Learning for Multi-Index Models in High Dimensions
Alireza Mousavi-Hosseini
Adel Javanmard
Murat A. Erdogdu
OOD
AAML
76
1
0
21 Oct 2024
Efficient Optimization Algorithms for Linear Adversarial Training
Antônio H. Ribeiro
Thomas B. Schon
Dave Zahariah
Francis Bach
AAML
59
1
0
16 Oct 2024
Investigating the Impact of Model Complexity in Large Language Models
Jing Luo
Huiyuan Wang
Weiran Huang
48
0
0
01 Oct 2024
H
H
H
-Consistency Guarantees for Regression
Anqi Mao
M. Mohri
Yutao Zhong
52
9
0
28 Mar 2024
Better Representations via Adversarial Training in Pre-Training: A Theoretical Perspective
Yue Xing
Xiaofeng Lin
Qifan Song
Yi Tian Xu
Belinda Zeng
Guang Cheng
SSL
37
0
0
26 Jan 2024
Anonymous Learning via Look-Alike Clustering: A Precise Analysis of Model Generalization
Adel Javanmard
Vahab Mirrokni
33
2
0
06 Oct 2023
Robust Linear Regression: Phase-Transitions and Precise Tradeoffs for General Norms
Elvis Dohmatob
M. Scetbon
AAML
OOD
45
0
0
01 Aug 2023
Reliable learning in challenging environments
Maria-Florina Balcan
Steve Hanneke
Rattana Pukdee
Dravyansh Sharma
OOD
41
4
0
06 Apr 2023
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
55
34
0
19 Mar 2023
It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness
Peiyu Xiong
Michael W. Tegegn
Jaskeerat Singh Sarin
Shubhraneel Pal
Julia Rubin
SILM
AAML
49
9
0
17 Mar 2023
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Simone Bombari
Shayan Kiyani
Marco Mondelli
AAML
72
10
0
03 Feb 2023
Blessings and Curses of Covariate Shifts: Adversarial Learning Dynamics, Directional Convergence, and Equilibria
Tengyuan Liang
45
1
0
05 Dec 2022
Adversarial Rademacher Complexity of Deep Neural Networks
Jiancong Xiao
Yanbo Fan
Ruoyu Sun
Zhimin Luo
AAML
36
22
0
27 Nov 2022
Stability Analysis and Generalization Bounds of Adversarial Training
Jiancong Xiao
Yanbo Fan
Ruoyu Sun
Jue Wang
Zhimin Luo
AAML
45
30
0
03 Oct 2022
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
25
18
0
03 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
39
13
0
26 Feb 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
40
120
0
21 Feb 2022
Efficient and Robust Classification for Sparse Attacks
M. Beliaev
Payam Delgosha
Hamed Hassani
Ramtin Pedarsani
AAML
34
2
0
23 Jan 2022
Interpolation can hurt robust generalization even when there is no noise
Konstantin Donhauser
Alexandru cTifrea
Michael Aerni
Reinhard Heckel
Fanny Yang
50
14
0
05 Aug 2021
Knowledge Enhanced Machine Learning Pipeline against Diverse Adversarial Attacks
Nezihe Merve Gürel
Xiangyu Qi
Luka Rimanic
Ce Zhang
Yue Liu
AAML
27
39
0
11 Jun 2021
Fundamental Tradeoffs in Distributionally Adversarial Training
M. Mehrabi
Adel Javanmard
Ryan A. Rossi
Anup B. Rao
Tung Mai
AAML
39
18
0
15 Jan 2021
Adversarial Classification: Necessary conditions and geometric flows
Nicolas García Trillos
Ryan W. Murray
AAML
52
19
0
21 Nov 2020
Theoretical Insights Into Multiclass Classification: A High-dimensional Asymptotic View
Christos Thrampoulidis
Samet Oymak
Mahdi Soltanolkotabi
37
41
0
16 Nov 2020
Precise Statistical Analysis of Classification Accuracies for Adversarial Training
Adel Javanmard
Mahdi Soltanolkotabi
AAML
45
62
0
21 Oct 2020
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
41
61
0
03 Aug 2020
Sharp Statistical Guarantees for Adversarially Robust Gaussian Classification
Chen Dan
Yuting Wei
Pradeep Ravikumar
33
45
0
29 Jun 2020
Provable tradeoffs in adversarially robust classification
Yan Sun
Hamed Hassani
David Hong
Alexander Robey
23
55
0
09 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
49
149
0
20 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
81
173
0
23 Apr 2020
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
56
69
0
25 Feb 2020
A Model of Double Descent for High-dimensional Binary Linear Classification
Zeyu Deng
A. Kammoun
Christos Thrampoulidis
57
145
0
13 Nov 2019
Adversarial examples from computational constraints
Sébastien Bubeck
Eric Price
Ilya P. Razenshteyn
AAML
70
230
0
25 May 2018
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
377
3,121
0
04 Nov 2016
1