ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.10060
  4. Cited By
Handling the Positive-Definite Constraint in the Bayesian Learning Rule

Handling the Positive-Definite Constraint in the Bayesian Learning Rule

24 February 2020
Wu Lin
Mark W. Schmidt
Mohammad Emtiyaz Khan
    BDL
ArXivPDFHTML

Papers citing "Handling the Positive-Definite Constraint in the Bayesian Learning Rule"

8 / 8 papers shown
Title
Spectral-factorized Positive-definite Curvature Learning for NN Training
Spectral-factorized Positive-definite Curvature Learning for NN Training
Wu Lin
Felix Dangel
Runa Eschenhagen
Juhan Bae
Richard E. Turner
Roger B. Grosse
47
0
0
10 Feb 2025
Forward-backward Gaussian variational inference via JKO in the
  Bures-Wasserstein Space
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
18
20
0
10 Apr 2023
Bayesian Learning for Neural Networks: an algorithmic survey
Bayesian Learning for Neural Networks: an algorithmic survey
M. Magris
Alexandros Iosifidis
BDL
DRL
35
68
0
21 Nov 2022
Manifold Gaussian Variational Bayes on the Precision Matrix
Manifold Gaussian Variational Bayes on the Precision Matrix
M. Magris
M. Shabani
Alexandros Iosifidis
37
2
0
26 Oct 2022
A Unified Perspective on Natural Gradient Variational Inference with
  Gaussian Mixture Models
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
O. Arenz
Philipp Dahlinger
Zihan Ye
Michael Volpp
Gerhard Neumann
39
15
0
23 Sep 2022
Bayes-Newton Methods for Approximate Bayesian Inference with PSD
  Guarantees
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William J. Wilkinson
Simo Särkkä
Arno Solin
BDL
21
15
0
02 Nov 2021
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
266
0
13 Jun 2018
A Stein variational Newton method
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
61
114
0
08 Jun 2018
1