ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.09116
  4. Cited By
Learning Deep Kernels for Non-Parametric Two-Sample Tests

Learning Deep Kernels for Non-Parametric Two-Sample Tests

21 February 2020
Feng Liu
Wenkai Xu
Jie Lu
Guangquan Zhang
A. Gretton
Danica J. Sutherland
ArXivPDFHTML

Papers citing "Learning Deep Kernels for Non-Parametric Two-Sample Tests"

30 / 30 papers shown
Title
Adaptive Latent-Space Constraints in Personalized FL
Adaptive Latent-Space Constraints in Personalized FL
Sana Ayromlou
D. B. Emerson
FedML
44
0
0
12 May 2025
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Boosting Statistic Learning with Synthetic Data from Pretrained Large Models
Jialong Jiang
Wenkang Hu
Jian Huang
Yuling Jiao
Xu Liu
DiffM
50
0
0
08 May 2025
Low-Rank Thinning
Low-Rank Thinning
Annabelle Michael Carrell
Albert Gong
Abhishek Shetty
Raaz Dwivedi
Lester W. Mackey
58
0
0
17 Feb 2025
Topological Signatures of Adversaries in Multimodal Alignments
Topological Signatures of Adversaries in Multimodal Alignments
Minh Vu
Geigh Zollicoffer
Huy Mai
B. Nebgen
Boian S. Alexandrov
Manish Bhattarai
AAML
65
0
0
29 Jan 2025
Beyond Reward Hacking: Causal Rewards for Large Language Model Alignment
Beyond Reward Hacking: Causal Rewards for Large Language Model Alignment
Chaoqi Wang
Zhuokai Zhao
Yibo Jiang
Zhaorun Chen
Chen Zhu
...
Jiayi Liu
Lizhu Zhang
Xiangjun Fan
Hao Ma
Sinong Wang
77
3
0
17 Jan 2025
A Unified Data Representation Learning for Non-parametric Two-sample Testing
A Unified Data Representation Learning for Non-parametric Two-sample Testing
Xunye Tian
Liuhua Peng
Zhijian Zhou
M. Gong
Feng Liu
Feng Liu
87
0
0
30 Nov 2024
Recurrent Neural Goodness-of-Fit Test for Time Series
Recurrent Neural Goodness-of-Fit Test for Time Series
Aoran Zhang
Wenbin Zhou
Liyan Xie
Shixiang Zhu
37
1
0
17 Oct 2024
Learning Deep Kernels for Non-Parametric Independence Testing
Learning Deep Kernels for Non-Parametric Independence Testing
Nathaniel Xu
Feng Liu
Danica J. Sutherland
BDL
31
0
0
10 Sep 2024
Nyström Kernel Stein Discrepancy
Nyström Kernel Stein Discrepancy
Florian Kalinke
Zoltan Szabo
Bharath K. Sriperumbudur
41
1
0
12 Jun 2024
The Representation Jensen-Shannon Divergence
The Representation Jensen-Shannon Divergence
J. Hoyos-Osorio
Santiago Posso-Murillo
L. S. Giraldo
40
6
0
25 May 2023
Unsupervised Domain Adaptation via Distilled Discriminative Clustering
Unsupervised Domain Adaptation via Distilled Discriminative Clustering
Hui Tang
Yaowei Wang
K. Jia
OOD
17
43
0
23 Feb 2023
Boosting the Power of Kernel Two-Sample Tests
Boosting the Power of Kernel Two-Sample Tests
Anirban Chatterjee
B. Bhattacharya
40
3
0
21 Feb 2023
Compress Then Test: Powerful Kernel Testing in Near-linear Time
Compress Then Test: Powerful Kernel Testing in Near-linear Time
Carles Domingo-Enrich
Raaz Dwivedi
Lester W. Mackey
33
9
0
14 Jan 2023
MMD-B-Fair: Learning Fair Representations with Statistical Testing
MMD-B-Fair: Learning Fair Representations with Statistical Testing
Namrata Deka
Danica J. Sutherland
18
6
0
15 Nov 2022
DC-Check: A Data-Centric AI checklist to guide the development of
  reliable machine learning systems
DC-Check: A Data-Centric AI checklist to guide the development of reliable machine learning systems
Nabeel Seedat
F. Imrie
M. Schaar
27
12
0
09 Nov 2022
A uniform kernel trick for high-dimensional two-sample problems
A uniform kernel trick for high-dimensional two-sample problems
Javier Cárcamo
Antonio Cuevas
Luis-Alberto Rodríguez
25
3
0
05 Oct 2022
How Robust is Your Fairness? Evaluating and Sustaining Fairness under
  Unseen Distribution Shifts
How Robust is Your Fairness? Evaluating and Sustaining Fairness under Unseen Distribution Shifts
Haotao Wang
Junyuan Hong
Jiayu Zhou
Zhangyang Wang
OOD
53
11
0
04 Jul 2022
Multi-class Classification with Fuzzy-feature Observations: Theory and
  Algorithms
Multi-class Classification with Fuzzy-feature Observations: Theory and Algorithms
Guangzhi Ma
Jie Lu
Feng Liu
Zhen Fang
Guangquan Zhang
8
6
0
09 Jun 2022
Federated Class-Incremental Learning
Federated Class-Incremental Learning
Jiahua Dong
Lixu Wang
Zhen Fang
Gan Sun
Shichao Xu
Xiao Wang
Qi Zhu
CLL
FedML
24
168
0
22 Mar 2022
Model-agnostic out-of-distribution detection using combined statistical
  tests
Model-agnostic out-of-distribution detection using combined statistical tests
Federico Bergamin
Pierre-Alexandre Mattei
Jakob Drachmann Havtorn
Hugo Senetaire
Hugo Schmutz
Lars Maaløe
Søren Hauberg
J. Frellsen
OODD
21
18
0
02 Mar 2022
Discovering Distribution Shifts using Latent Space Representations
Discovering Distribution Shifts using Latent Space Representations
Leo Betthauser
Urszula Chajewska
M. Diesendruck
Rohith Pesala
OOD
16
5
0
04 Feb 2022
Learning Bounds for Open-Set Learning
Learning Bounds for Open-Set Learning
Zhen Fang
Jie Lu
Anjin Liu
Feng Liu
Guangquan Zhang
18
60
0
30 Jun 2021
Standardisation-function Kernel Stein Discrepancy: A Unifying View on
  Kernel Stein Discrepancy Tests for Goodness-of-fit
Standardisation-function Kernel Stein Discrepancy: A Unifying View on Kernel Stein Discrepancy Tests for Goodness-of-fit
Wenkai Xu
32
4
0
23 Jun 2021
Meta Two-Sample Testing: Learning Kernels for Testing with Limited Data
Meta Two-Sample Testing: Learning Kernels for Testing with Limited Data
Feng Liu
Wenkai Xu
Jie Lu
Danica J. Sutherland
15
19
0
14 Jun 2021
Two-sample Test with Kernel Projected Wasserstein Distance
Two-sample Test with Kernel Projected Wasserstein Distance
Jie Wang
Rui Gao
Yao Xie
21
19
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
104
184
0
12 Jan 2021
Learning from a Complementary-label Source Domain: Theory and Algorithms
Learning from a Complementary-label Source Domain: Theory and Algorithms
Yiyang Zhang
Feng Liu
Zhen Fang
Bo Yuan
Guangquan Zhang
Jie Lu
28
70
0
04 Aug 2020
Unbiased estimators for the variance of MMD estimators
Unbiased estimators for the variance of MMD estimators
Danica J. Sutherland
Namrata Deka
19
11
0
05 Jun 2019
Learning Smooth Representation for Unsupervised Domain Adaptation
Learning Smooth Representation for Unsupervised Domain Adaptation
Guanyu Cai
Lianghua He
Mengchu Zhou
H. Alhumade
D. Hu
18
16
0
26 May 2019
Revisiting Classifier Two-Sample Tests
Revisiting Classifier Two-Sample Tests
David Lopez-Paz
Maxime Oquab
78
390
0
20 Oct 2016
1