ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.10748
16
16

Learning Smooth Representation for Unsupervised Domain Adaptation

26 May 2019
Guanyu Cai
Lianghua He
Mengchu Zhou
H. Alhumade
D. Hu
ArXivPDFHTML
Abstract

Typical adversarial-training-based unsupervised domain adaptation methods are vulnerable when the source and target datasets are highly-complex or exhibit a large discrepancy between their data distributions. Recently, several Lipschitz-constraint-based methods have been explored. The satisfaction of Lipschitz continuity guarantees a remarkable performance on a target domain. However, they lack a mathematical analysis of why a Lipschitz constraint is beneficial to unsupervised domain adaptation and usually perform poorly on large-scale datasets. In this paper, we take the principle of utilizing a Lipschitz constraint further by discussing how it affects the error bound of unsupervised domain adaptation. A connection between them is built and an illustration of how Lipschitzness reduces the error bound is presented. A \textbf{local smooth discrepancy} is defined to measure Lipschitzness of a target distribution in a pointwise way. When constructing a deep end-to-end model, to ensure the effectiveness and stability of unsupervised domain adaptation, three critical factors are considered in our proposed optimization strategy, i.e., the sample amount of a target domain, dimension and batchsize of samples. Experimental results demonstrate that our model performs well on several standard benchmarks. Our ablation study shows that the sample amount of a target domain, the dimension and batchsize of samples indeed greatly impact Lipschitz-constraint-based methods' ability to handle large-scale datasets. Code is available at https://github.com/CuthbertCai/SRDA.

View on arXiv
Comments on this paper