ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.08791
  4. Cited By
Bayesian Deep Learning and a Probabilistic Perspective of Generalization

Bayesian Deep Learning and a Probabilistic Perspective of Generalization

20 February 2020
A. Wilson
Pavel Izmailov
    UQCV
    BDL
    OOD
ArXivPDFHTML

Papers citing "Bayesian Deep Learning and a Probabilistic Perspective of Generalization"

32 / 32 papers shown
Title
Bayesian Deep Learning for Discrete Choice
Bayesian Deep Learning for Discrete Choice
Daniel F. Villarraga
Ricardo A. Daziano
BDL
AI4CE
64
0
0
23 May 2025
JaxSGMC: Modular stochastic gradient MCMC in JAX
JaxSGMC: Modular stochastic gradient MCMC in JAX
Stephan Thaler
Paul Fuchs
Ana Cukarska
Julija Zavadlav
BDL
123
2
0
16 May 2025
HopCast: Calibration of Autoregressive Dynamics Models
HopCast: Calibration of Autoregressive Dynamics Models
Muhammad Bilal Shahid
Cody H. Fleming
UQCV
70
0
0
27 Jan 2025
Implementing Trust in Non-Small Cell Lung Cancer Diagnosis with a Conformalized Uncertainty-Aware AI Framework in Whole-Slide Images
Xiaoge Zhang
Tao Wang
Chao Yan
Fedaa Najdawi
Kai Zhou
Yuan Ma
Yiu-ming Cheung
Bradley Malin
MedIm
245
0
0
03 Jan 2025
Streamlining Prediction in Bayesian Deep Learning
Streamlining Prediction in Bayesian Deep Learning
Marcus Klasson
Talal Alrawajfeh
Mikko Heikkilä
Martin Trapp
UQCV
BDL
133
2
0
27 Nov 2024
pFedGPA: Diffusion-based Generative Parameter Aggregation for Personalized Federated Learning
pFedGPA: Diffusion-based Generative Parameter Aggregation for Personalized Federated Learning
Jiahao Lai
Jiaqiang Li
Jian Xu
Yanru Wu
Boshi Tang
Siqi Chen
Yongfeng Huang
Wenbo Ding
Yang Li
FedML
107
0
0
09 Sep 2024
Neural Entropy
Neural Entropy
Akhil Premkumar
DiffM
116
0
0
05 Sep 2024
Bias of Stochastic Gradient Descent or the Architecture: Disentangling the Effects of Overparameterization of Neural Networks
Bias of Stochastic Gradient Descent or the Architecture: Disentangling the Effects of Overparameterization of Neural Networks
Amit Peleg
Matthias Hein
43
0
0
04 Jul 2024
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
238
3
0
05 Jun 2024
Scalable Bayesian Learning with posteriors
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
90
1
0
31 May 2024
MODL: Multilearner Online Deep Learning
MODL: Multilearner Online Deep Learning
Antonios Valkanas
Boris N. Oreshkin
Mark Coates
85
2
0
28 May 2024
LoRA-Ensemble: Efficient Uncertainty Modelling for Self-Attention Networks
LoRA-Ensemble: Efficient Uncertainty Modelling for Self-Attention Networks
Michelle Halbheer
Dominik J. Mühlematter
Alexander Becker
Dominik Narnhofer
Helge Aasen
Konrad Schindler
Mehmet Özgür Türkoglu
UQCV
68
2
0
23 May 2024
Uncertainty quantification in fine-tuned LLMs using LoRA ensembles
Uncertainty quantification in fine-tuned LLMs using LoRA ensembles
Oleksandr Balabanov
Hampus Linander
UQCV
78
16
0
19 Feb 2024
A Bias-Variance Decomposition for Ensembles over Multiple Synthetic Datasets
A Bias-Variance Decomposition for Ensembles over Multiple Synthetic Datasets
Ossi Raisa
Antti Honkela
89
1
0
06 Feb 2024
Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks
Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks
Piyush Tiwary
Atri Guha
Subhodip Panda
Prathosh A.P.
MU
GAN
75
8
0
25 Sep 2023
Uncertainty Calibration for Counterfactual Propensity Estimation in Recommendation
Uncertainty Calibration for Counterfactual Propensity Estimation in Recommendation
Wenbo Hu
Xin Sun
Qiang liu
Wenbo Hu
Shu Wu
62
0
0
23 Mar 2023
On Uncertainty, Tempering, and Data Augmentation in Bayesian
  Classification
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor
Wesley J. Maddox
Pavel Izmailov
A. Wilson
BDL
UD
47
50
0
30 Mar 2022
A Framework and Benchmark for Deep Batch Active Learning for Regression
A Framework and Benchmark for Deep Batch Active Learning for Regression
David Holzmüller
Viktor Zaverkin
Johannes Kastner
Ingo Steinwart
UQCV
BDL
GP
61
35
0
17 Mar 2022
What Are Bayesian Neural Network Posteriors Really Like?
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
61
383
0
29 Apr 2021
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
57
315
0
15 Feb 2020
Deep Ensembles: A Loss Landscape Perspective
Deep Ensembles: A Loss Landscape Perspective
Stanislav Fort
Huiyi Hu
Balaji Lakshminarayanan
OOD
UQCV
69
624
0
05 Dec 2019
Fantastic Generalization Measures and Where to Find Them
Fantastic Generalization Measures and Where to Find Them
Yiding Jiang
Behnam Neyshabur
H. Mobahi
Dilip Krishnan
Samy Bengio
AI4CE
62
599
0
04 Dec 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
54
77
0
19 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
137
1,677
0
06 Jun 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
74
804
0
07 Feb 2019
A Primer on PAC-Bayesian Learning
A Primer on PAC-Bayesian Learning
Benjamin Guedj
83
221
0
16 Jan 2019
Reconciling modern machine learning practice and the bias-variance
  trade-off
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
172
1,628
0
28 Dec 2018
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
87
269
0
13 Jun 2018
Essentially No Barriers in Neural Network Energy Landscape
Essentially No Barriers in Neural Network Energy Landscape
Felix Dräxler
K. Veschgini
M. Salmhofer
Fred Hamprecht
MoMe
97
430
0
02 Mar 2018
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Pratik Chaudhari
A. Choromańska
Stefano Soatto
Yann LeCun
Carlo Baldassi
C. Borgs
J. Chayes
Levent Sagun
R. Zecchina
ODL
84
769
0
06 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
355
2,922
0
15 Sep 2016
Expectation Propagation for approximate Bayesian inference
Expectation Propagation for approximate Bayesian inference
T. Minka
104
1,906
0
10 Jan 2013
1