Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.07400
Cited By
Learning Parities with Neural Networks
18 February 2020
Amit Daniely
Eran Malach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Parities with Neural Networks"
50 / 55 papers shown
Title
Mastering NIM and Impartial Games with Weak Neural Networks: An AlphaZero-inspired Multi-Frame Approach
Søren Riis
16
0
0
10 Nov 2024
From Sparse Dependence to Sparse Attention: Unveiling How Chain-of-Thought Enhances Transformer Sample Efficiency
Kaiyue Wen
Huaqing Zhang
Hongzhou Lin
Jingzhao Zhang
MoE
LRM
61
2
0
07 Oct 2024
Why Larger Language Models Do In-context Learning Differently?
Zhenmei Shi
Junyi Wei
Zhuoyan Xu
Yingyu Liang
37
18
0
30 May 2024
A Provably Effective Method for Pruning Experts in Fine-tuned Sparse Mixture-of-Experts
Mohammed Nowaz Rabbani Chowdhury
Meng Wang
K. E. Maghraoui
Naigang Wang
Pin-Yu Chen
Christopher Carothers
MoE
36
4
0
26 May 2024
Matching the Statistical Query Lower Bound for k-sparse Parity Problems with Stochastic Gradient Descent
Yiwen Kou
Zixiang Chen
Quanquan Gu
Sham Kakade
42
0
0
18 Apr 2024
Half-Space Feature Learning in Neural Networks
Mahesh Lorik Yadav
H. G. Ramaswamy
Chandrashekar Lakshminarayanan
MLT
27
0
0
05 Apr 2024
Simulating Weighted Automata over Sequences and Trees with Transformers
Michael Rizvi
M. Lizaire
Clara Lacroce
Guillaume Rabusseau
AI4CE
45
0
0
12 Mar 2024
How Do Nonlinear Transformers Learn and Generalize in In-Context Learning?
Hongkang Li
Meng Wang
Songtao Lu
Xiaodong Cui
Pin-Yu Chen
MLT
40
14
0
23 Feb 2024
RedEx: Beyond Fixed Representation Methods via Convex Optimization
Amit Daniely
Mariano Schain
Gilad Yehudai
13
0
0
15 Jan 2024
Learning from higher-order statistics, efficiently: hypothesis tests, random features, and neural networks
Eszter Székely
Lorenzo Bardone
Federica Gerace
Sebastian Goldt
32
2
0
22 Dec 2023
Exploring Parity Challenges in Reinforcement Learning through Curriculum Learning with Noisy Labels
Bei Zhou
Søren Riis
20
2
0
08 Dec 2023
Feature emergence via margin maximization: case studies in algebraic tasks
Depen Morwani
Benjamin L. Edelman
Costin-Andrei Oncescu
Rosie Zhao
Sham Kakade
34
14
0
13 Nov 2023
SGD Finds then Tunes Features in Two-Layer Neural Networks with near-Optimal Sample Complexity: A Case Study in the XOR problem
Margalit Glasgow
MLT
74
13
0
26 Sep 2023
Auto-Regressive Next-Token Predictors are Universal Learners
Eran Malach
LRM
19
36
0
13 Sep 2023
Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and Luck
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
43
8
0
07 Sep 2023
Six Lectures on Linearized Neural Networks
Theodor Misiakiewicz
Andrea Montanari
34
12
0
25 Aug 2023
Provable Multi-Task Representation Learning by Two-Layer ReLU Neural Networks
Liam Collins
Hamed Hassani
Mahdi Soltanolkotabi
Aryan Mokhtari
Sanjay Shakkottai
31
10
0
13 Jul 2023
Provable Advantage of Curriculum Learning on Parity Targets with Mixed Inputs
Emmanuel Abbe
Elisabetta Cornacchia
Aryo Lotfi
28
11
0
29 Jun 2023
Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks
Mohammed Nowaz Rabbani Chowdhury
Shuai Zhang
M. Wang
Sijia Liu
Pin-Yu Chen
MoE
26
17
0
07 Jun 2023
Most Neural Networks Are Almost Learnable
Amit Daniely
Nathan Srebro
Gal Vardi
18
0
0
25 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
36
13
0
11 May 2023
SGD learning on neural networks: leap complexity and saddle-to-saddle dynamics
Emmanuel Abbe
Enric Boix-Adserà
Theodor Misiakiewicz
FedML
MLT
79
72
0
21 Feb 2023
A Theoretical Understanding of Shallow Vision Transformers: Learning, Generalization, and Sample Complexity
Hongkang Li
M. Wang
Sijia Liu
Pin-Yu Chen
ViT
MLT
35
56
0
12 Feb 2023
Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural Networks
Shuai Zhang
M. Wang
Pin-Yu Chen
Sijia Liu
Songtao Lu
Miaoyuan Liu
MLT
19
16
0
06 Feb 2023
A Mathematical Model for Curriculum Learning for Parities
Elisabetta Cornacchia
Elchanan Mossel
34
10
0
31 Jan 2023
Generalization on the Unseen, Logic Reasoning and Degree Curriculum
Emmanuel Abbe
Samy Bengio
Aryo Lotfi
Kevin Rizk
LRM
33
48
0
30 Jan 2023
Problem-Dependent Power of Quantum Neural Networks on Multi-Class Classification
Yuxuan Du
Yibo Yang
Dacheng Tao
Min-hsiu Hsieh
36
22
0
29 Dec 2022
Spectral Evolution and Invariance in Linear-width Neural Networks
Zhichao Wang
A. Engel
Anand D. Sarwate
Ioana Dumitriu
Tony Chiang
40
14
0
11 Nov 2022
Transformers Learn Shortcuts to Automata
Bingbin Liu
Jordan T. Ash
Surbhi Goel
A. Krishnamurthy
Cyril Zhang
OffRL
LRM
32
155
0
19 Oct 2022
Spectral Regularization Allows Data-frugal Learning over Combinatorial Spaces
Amirali Aghazadeh
Nived Rajaraman
Tony Tu
Kannan Ramchandran
17
2
0
05 Oct 2022
Feature selection with gradient descent on two-layer networks in low-rotation regimes
Matus Telgarsky
MLT
28
16
0
04 Aug 2022
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit
Boaz Barak
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
27
123
0
18 Jul 2022
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
17
112
0
30 Jun 2022
Limitations of the NTK for Understanding Generalization in Deep Learning
Nikhil Vyas
Yamini Bansal
Preetum Nakkiran
20
31
0
20 Jun 2022
Intrinsic dimensionality and generalization properties of the
R
\mathcal{R}
R
-norm inductive bias
Navid Ardeshir
Daniel J. Hsu
Clayton Sanford
CML
AI4CE
18
6
0
10 Jun 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
24
10
0
08 Jun 2022
Impartial Games: A Challenge for Reinforcement Learning
Bei Zhou
Søren Riis
24
6
0
25 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
31
121
0
03 May 2022
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
30
29
0
15 Feb 2022
Quantum machine learning beyond kernel methods
Sofiene Jerbi
Lukas J. Fiderer
Hendrik Poulsen Nautrup
Jonas M. Kubler
H. Briegel
Vedran Dunjko
11
159
0
25 Oct 2021
The Eigenlearning Framework: A Conservation Law Perspective on Kernel Regression and Wide Neural Networks
James B. Simon
Madeline Dickens
Dhruva Karkada
M. DeWeese
40
27
0
08 Oct 2021
On the Power of Differentiable Learning versus PAC and SQ Learning
Emmanuel Abbe
Pritish Kamath
Eran Malach
Colin Sandon
Nathan Srebro
MLT
71
23
0
09 Aug 2021
Video Super-Resolution Transformer
Jie Cao
Yawei Li
K. Zhang
Luc Van Gool
ViT
28
166
0
12 Jun 2021
Properties of the After Kernel
Philip M. Long
11
29
0
21 May 2021
Noether: The More Things Change, the More Stay the Same
Grzegorz Gluch
R. Urbanke
14
17
0
12 Apr 2021
Spectral Analysis of the Neural Tangent Kernel for Deep Residual Networks
Yuval Belfer
Amnon Geifman
Meirav Galun
Ronen Basri
10
17
0
07 Apr 2021
Quantifying the Benefit of Using Differentiable Learning over Tangent Kernels
Eran Malach
Pritish Kamath
Emmanuel Abbe
Nathan Srebro
11
39
0
01 Mar 2021
Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed
Maria Refinetti
Sebastian Goldt
Florent Krzakala
Lenka Zdeborová
17
73
0
23 Feb 2021
The Connection Between Approximation, Depth Separation and Learnability in Neural Networks
Eran Malach
Gilad Yehudai
Shai Shalev-Shwartz
Ohad Shamir
13
20
0
31 Jan 2021
Towards Understanding Learning in Neural Networks with Linear Teachers
Roei Sarussi
Alon Brutzkus
Amir Globerson
FedML
MLT
55
20
0
07 Jan 2021
1
2
Next