ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.07101
  4. Cited By
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models

Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models

17 February 2020
Chin-Wei Huang
Laurent Dinh
Aaron Courville
    DRL
ArXivPDFHTML

Papers citing "Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models"

17 / 67 papers shown
Title
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
74
1,805
0
15 Jun 2016
Improved Techniques for Training GANs
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
337
8,999
0
10 Jun 2016
Towards a Neural Statistician
Towards a Neural Statistician
Harrison Edwards
Amos Storkey
BDL
37
428
0
07 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
162
3,670
0
26 May 2016
A Variational Perspective on Accelerated Methods in Optimization
A Variational Perspective on Accelerated Methods in Optimization
Andre Wibisono
Ashia Wilson
Michael I. Jordan
74
572
0
14 Mar 2016
Weight Normalization: A Simple Reparameterization to Accelerate Training
  of Deep Neural Networks
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
Tim Salimans
Diederik P. Kingma
ODL
132
1,933
0
25 Feb 2016
Ladder Variational Autoencoders
Ladder Variational Autoencoders
C. Sønderby
T. Raiko
Lars Maaløe
Søren Kaae Sønderby
Ole Winther
BDL
DRL
65
907
0
06 Feb 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
375
2,563
0
25 Jan 2016
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
49
334
0
07 Nov 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
189
1,240
0
01 Sep 2015
A Recurrent Latent Variable Model for Sequential Data
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRL
BDL
61
1,250
0
07 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
234
4,143
0
21 May 2015
Early Stopping is Nonparametric Variational Inference
Early Stopping is Nonparametric Variational Inference
D. Maclaurin
David Duvenaud
Ryan P. Adams
BDL
51
95
0
06 Apr 2015
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
191
8,351
0
28 Nov 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
69
2,246
0
30 Oct 2014
High-Dimensional Probability Estimation with Deep Density Models
High-Dimensional Probability Estimation with Deep Density Models
Oren Rippel
Ryan P. Adams
90
124
0
20 Feb 2013
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
280
3,278
0
09 Jun 2012
Previous
12