ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.06038
  4. Cited By
Never Give Up: Learning Directed Exploration Strategies

Never Give Up: Learning Directed Exploration Strategies

14 February 2020
Adria Puigdomenech Badia
Pablo Sprechmann
Alex Vitvitskyi
Daniel Guo
Bilal Piot
Steven Kapturowski
O. Tieleman
Martín Arjovsky
Alexander Pritzel
Andew Bolt
Charles Blundell
ArXivPDFHTML

Papers citing "Never Give Up: Learning Directed Exploration Strategies"

28 / 78 papers shown
Title
Physical Derivatives: Computing policy gradients by physical
  forward-propagation
Physical Derivatives: Computing policy gradients by physical forward-propagation
Arash Mehrjou
Ashkan Soleymani
Stefan Bauer
Bernhard Schölkopf
40
0
0
15 Jan 2022
Episodic Multi-agent Reinforcement Learning with Curiosity-Driven
  Exploration
Episodic Multi-agent Reinforcement Learning with Curiosity-Driven Exploration
Lu Zheng
Jiarui Chen
Jianhao Wang
Jiamin He
Yujing Hu
Yingfeng Chen
Changjie Fan
Yang Gao
Chongjie Zhang
18
82
0
22 Nov 2021
Deep Reinforcement Learning Versus Evolution Strategies: A Comparative
  Survey
Deep Reinforcement Learning Versus Evolution Strategies: A Comparative Survey
Amjad Yousef Majid
Serge Saaybi
Tomas van Rietbergen
Vincent François-Lavet
R. V. Prasad
Chris Verhoeven
OffRL
64
55
0
28 Sep 2021
Exploration in Deep Reinforcement Learning: From Single-Agent to
  Multiagent Domain
Exploration in Deep Reinforcement Learning: From Single-Agent to Multiagent Domain
Jianye Hao
Tianpei Yang
Hongyao Tang
Chenjia Bai
Jinyi Liu
Zhaopeng Meng
Peng Liu
Zhen Wang
OffRL
41
93
0
14 Sep 2021
APS: Active Pretraining with Successor Features
APS: Active Pretraining with Successor Features
Hao Liu
Pieter Abbeel
52
119
0
31 Aug 2021
When should agents explore?
When should agents explore?
Miruna Pislar
David Szepesvari
Georg Ostrovski
Diana Borsa
Tom Schaul
40
22
0
26 Aug 2021
Explore and Control with Adversarial Surprise
Explore and Control with Adversarial Surprise
Arnaud Fickinger
Natasha Jaques
Samyak Parajuli
Michael Chang
Nicholas Rhinehart
Glen Berseth
Stuart J. Russell
Sergey Levine
42
8
0
12 Jul 2021
An Entropy Regularization Free Mechanism for Policy-based Reinforcement
  Learning
An Entropy Regularization Free Mechanism for Policy-based Reinforcement Learning
Changnan Xiao
Haosen Shi
Jiajun Fan
Shihong Deng
26
5
0
01 Jun 2021
Did I do that? Blame as a means to identify controlled effects in
  reinforcement learning
Did I do that? Blame as a means to identify controlled effects in reinforcement learning
Oriol Corcoll
Youssef Mohamed
Raul Vicente
24
3
0
01 Jun 2021
Principled Exploration via Optimistic Bootstrapping and Backward
  Induction
Principled Exploration via Optimistic Bootstrapping and Backward Induction
Chenjia Bai
Lingxiao Wang
Lei Han
Jianye Hao
Animesh Garg
Peng Liu
Zhaoran Wang
OffRL
26
38
0
13 May 2021
Human-in-the-Loop Deep Reinforcement Learning with Application to
  Autonomous Driving
Human-in-the-Loop Deep Reinforcement Learning with Application to Autonomous Driving
Jingda Wu
Zhiyu Huang
Chao Huang
Zhongxu Hu
Peng Hang
Yang Xing
Chen Lv
42
41
0
15 Apr 2021
Behavior From the Void: Unsupervised Active Pre-Training
Behavior From the Void: Unsupervised Active Pre-Training
Hao Liu
Pieter Abbeel
VLM
SSL
46
195
0
08 Mar 2021
Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning
Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning
Victor Campos
Pablo Sprechmann
Steven Hansen
André Barreto
Steven Kapturowski
Alex Vitvitskyi
Adria Puigdomenech Badia
Charles Blundell
OffRL
OnRL
43
25
0
24 Feb 2021
Decoupled Exploration and Exploitation Policies for Sample-Efficient
  Reinforcement Learning
Decoupled Exploration and Exploitation Policies for Sample-Efficient Reinforcement Learning
William F. Whitney
Michael Bloesch
Jost Tobias Springenberg
A. Abdolmaleki
Kyunghyun Cho
Martin Riedmiller
OffRL
29
13
0
23 Jan 2021
Learn Dynamic-Aware State Embedding for Transfer Learning
Learn Dynamic-Aware State Embedding for Transfer Learning
Kaige Yang
18
1
0
06 Jan 2021
Geometric Entropic Exploration
Geometric Entropic Exploration
Z. Guo
M. G. Azar
Alaa Saade
S. Thakoor
Bilal Piot
Bernardo Avila-Pires
Michal Valko
Thomas Mesnard
Tor Lattimore
Rémi Munos
38
30
0
06 Jan 2021
Policy Manifold Search for Improving Diversity-based Neuroevolution
Policy Manifold Search for Improving Diversity-based Neuroevolution
Nemanja Rakićević
Antoine Cully
Petar Kormushev
29
0
0
15 Dec 2020
BeBold: Exploration Beyond the Boundary of Explored Regions
BeBold: Exploration Beyond the Boundary of Explored Regions
Tianjun Zhang
Huazhe Xu
Xiaolong Wang
Yi Wu
Kurt Keutzer
Joseph E. Gonzalez
Yuandong Tian
36
40
0
15 Dec 2020
Latent World Models For Intrinsically Motivated Exploration
Latent World Models For Intrinsically Motivated Exploration
Aleksandr Ermolov
N. Sebe
31
25
0
05 Oct 2020
Novelty Search in Representational Space for Sample Efficient
  Exploration
Novelty Search in Representational Space for Sample Efficient Exploration
Ruo Yu Tao
Vincent François-Lavet
Joelle Pineau
35
43
0
28 Sep 2020
Learning Abstract Models for Strategic Exploration and Fast Reward
  Transfer
Learning Abstract Models for Strategic Exploration and Fast Reward Transfer
E. Liu
Ramtin Keramati
Sudarshan Seshadri
Kelvin Guu
Panupong Pasupat
Emma Brunskill
Percy Liang
OffRL
27
5
0
12 Jul 2020
Group Equivariant Deep Reinforcement Learning
Group Equivariant Deep Reinforcement Learning
Arnab Kumar Mondal
Pratheeksha Nair
Kaleem Siddiqi
19
31
0
01 Jul 2020
Temporally-Extended ε-Greedy Exploration
Temporally-Extended ε-Greedy Exploration
Will Dabney
Georg Ostrovski
André Barreto
22
34
0
02 Jun 2020
Acme: A Research Framework for Distributed Reinforcement Learning
Acme: A Research Framework for Distributed Reinforcement Learning
Matthew W. Hoffman
Bobak Shahriari
John Aslanides
Gabriel Barth-Maron
Nikola Momchev
...
Srivatsan Srinivasan
A. Cowie
Ziyun Wang
Bilal Piot
Nando de Freitas
65
225
0
01 Jun 2020
Bootstrap Latent-Predictive Representations for Multitask Reinforcement
  Learning
Bootstrap Latent-Predictive Representations for Multitask Reinforcement Learning
Z. Guo
Bernardo Avila-Pires
Bilal Piot
Jean-Bastien Grill
Florent Altché
Rémi Munos
M. G. Azar
BDL
DRL
SSL
45
140
0
30 Apr 2020
First return, then explore
First return, then explore
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
47
352
0
27 Apr 2020
Agent57: Outperforming the Atari Human Benchmark
Agent57: Outperforming the Atari Human Benchmark
Adria Puigdomenech Badia
Bilal Piot
Steven Kapturowski
Pablo Sprechmann
Alex Vitvitskyi
Daniel Guo
Charles Blundell
OffRL
29
510
0
30 Mar 2020
An Introduction to Deep Reinforcement Learning
An Introduction to Deep Reinforcement Learning
Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joelle Pineau
OffRL
AI4CE
88
1,236
0
30 Nov 2018
Previous
12