ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.05646
  4. Cited By
Adversarial Machine Learning -- Industry Perspectives

Adversarial Machine Learning -- Industry Perspectives

4 February 2020
Ramnath Kumar
Magnus Nyström
J. Lambert
Andrew Marshall
Mario Goertzel
Andi Comissoneru
Matt Swann
Sharon Xia
    AAML
    SILM
ArXivPDFHTML

Papers citing "Adversarial Machine Learning -- Industry Perspectives"

27 / 27 papers shown
Title
AnywhereDoor: Multi-Target Backdoor Attacks on Object Detection
Jialin Lu
Junjie Shan
Ziqi Zhao
Ka-Ho Chow
AAML
108
0
0
09 Mar 2025
Security by Design Issues in Autonomous Vehicles
Security by Design Issues in Autonomous Vehicles
Martin Higgins
D. N. Jha
David Blundell
D. Wallom
55
0
0
07 Jan 2025
Adversaries With Incentives: A Strategic Alternative to Adversarial Robustness
Adversaries With Incentives: A Strategic Alternative to Adversarial Robustness
Maayan Ehrenberg
Roy Ganz
Nir Rosenfeld
AAML
64
0
0
17 Jun 2024
Energy-Latency Attacks via Sponge Poisoning
Energy-Latency Attacks via Sponge Poisoning
Antonio Emanuele Cinà
Ambra Demontis
Battista Biggio
Fabio Roli
Marcello Pelillo
SILM
91
29
0
14 Mar 2022
PointBA: Towards Backdoor Attacks in 3D Point Cloud
PointBA: Towards Backdoor Attacks in 3D Point Cloud
Xinke Li
Zhirui Chen
Yue Zhao
Zekun Tong
Yabang Zhao
A. Lim
Qiufeng Wang
3DPC
AAML
88
52
0
30 Mar 2021
Failure Modes in Machine Learning Systems
Failure Modes in Machine Learning Systems
Ramnath Kumar
David R. O'Brien
Kendra Albert
Salomé Viljöen
Jeffrey Snover
AAML
16
50
0
25 Nov 2019
Adversarial Music: Real World Audio Adversary Against Wake-word
  Detection System
Adversarial Music: Real World Audio Adversary Against Wake-word Detection System
Juncheng Billy Li
Shuhui Qu
Xinjian Li
Joseph Szurley
J. Zico Kolter
Florian Metze
AAML
14
65
0
31 Oct 2019
The Deepfake Detection Challenge (DFDC) Preview Dataset
The Deepfake Detection Challenge (DFDC) Preview Dataset
Brian Dolhansky
Russ Howes
Ben Pflaum
Nicole Baram
Cristian Canton Ferrer
52
494
0
19 Oct 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
107
3,399
0
28 Mar 2019
Motivating the Rules of the Game for Adversarial Example Research
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
73
227
0
18 Jul 2018
Adversarial Robustness Toolbox v1.0.0
Adversarial Robustness Toolbox v1.0.0
Maria-Irina Nicolae
M. Sinn
Minh-Ngoc Tran
Beat Buesser
Ambrish Rawat
...
Nathalie Baracaldo
Bryant Chen
Heiko Ludwig
Ian Molloy
Ben Edwards
AAML
VLM
67
457
0
03 Jul 2018
Adversarial Reprogramming of Neural Networks
Adversarial Reprogramming of Neural Networks
Gamaleldin F. Elsayed
Ian Goodfellow
Jascha Narain Sohl-Dickstein
OOD
AAML
34
179
0
28 Jun 2018
Towards Fast Computation of Certified Robustness for ReLU Networks
Towards Fast Computation of Certified Robustness for ReLU Networks
Tsui-Wei Weng
Huan Zhang
Hongge Chen
Zhao Song
Cho-Jui Hsieh
Duane S. Boning
Inderjit S. Dhillon
Luca Daniel
AAML
76
689
0
25 Apr 2018
Manipulating Machine Learning: Poisoning Attacks and Countermeasures for
  Regression Learning
Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning
Matthew Jagielski
Alina Oprea
Battista Biggio
Chang-rui Liu
Cristina Nita-Rotaru
Yue Liu
AAML
77
757
0
01 Apr 2018
Security Risks in Deep Learning Implementations
Security Risks in Deep Learning Implementations
Qixue Xiao
Kang Li
Deyue Zhang
Weilin Xu
SILM
30
68
0
29 Nov 2017
AI Safety Gridworlds
AI Safety Gridworlds
Jan Leike
Miljan Martic
Victoria Krakovna
Pedro A. Ortega
Tom Everitt
Andrew Lefrancq
Laurent Orseau
Shane Legg
95
250
0
27 Nov 2017
BadNets: Identifying Vulnerabilities in the Machine Learning Model
  Supply Chain
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
Tianyu Gu
Brendan Dolan-Gavitt
S. Garg
SILM
72
1,758
0
22 Aug 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection
  Methods
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
103
1,851
0
20 May 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
290
1,849
0
03 Feb 2017
Towards the Science of Security and Privacy in Machine Learning
Towards the Science of Security and Privacy in Machine Learning
Nicolas Papernot
Patrick McDaniel
Arunesh Sinha
Michael P. Wellman
AAML
67
472
0
11 Nov 2016
Membership Inference Attacks against Machine Learning Models
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
203
4,075
0
18 Oct 2016
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
Nicolas Papernot
Fartash Faghri
Nicholas Carlini
Ian Goodfellow
Reuben Feinman
...
David Berthelot
P. Hendricks
Jonas Rauber
Rujun Long
Patrick McDaniel
AAML
49
512
0
03 Oct 2016
Stealing Machine Learning Models via Prediction APIs
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
76
1,798
0
09 Sep 2016
Concrete Problems in AI Safety
Concrete Problems in AI Safety
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
147
2,371
0
21 Jun 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks
  using Adversarial Samples
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
81
1,735
0
24 May 2016
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
176
18,922
0
20 Dec 2014
Detecting Anomalous Process Behaviour using Second Generation Artificial
  Immune Systems
Detecting Anomalous Process Behaviour using Second Generation Artificial Immune Systems
J. Twycross
U. Aickelin
Amanda M. Whitbrook
60
22
0
18 Jun 2010
1