Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.03244
Cited By
Multi-Objective Molecule Generation using Interpretable Substructures
8 February 2020
Wengong Jin
Regina Barzilay
Tommi Jaakkola
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Multi-Objective Molecule Generation using Interpretable Substructures"
28 / 28 papers shown
Title
Learning Graph Models for Retrosynthesis Prediction
Vignesh Ram Somnath
Charlotte Bunne
Connor W. Coley
Andreas Krause
Regina Barzilay
46
92
0
12 Jun 2020
Discrete Object Generation with Reversible Inductive Construction
Ari Seff
Wenda Zhou
Farhan N. Damani
A. Doyle
Ryan P. Adams
38
30
0
18 Jul 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
109
1,300
0
10 Mar 2019
Functional Transparency for Structured Data: a Game-Theoretic Approach
Guang-He Lee
Wengong Jin
David Alvarez-Melis
Tommi Jaakkola
31
19
0
26 Feb 2019
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
67
226
0
03 Dec 2018
Using Attribution to Decode Dataset Bias in Neural Network Models for Chemistry
Kevin McCloskey
Ankur Taly
Federico Monti
M. Brenner
Lucy J. Colwell
36
85
0
27 Nov 2018
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
68
537
0
19 Oct 2018
Molecular Hypergraph Grammar with its Application to Molecular Optimization
Hiroshi Kajino
34
102
0
08 Sep 2018
Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders
Tengfei Ma
Jie Chen
Cao Xiao
97
208
0
07 Sep 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
257
895
0
07 Jun 2018
MolGAN: An implicit generative model for small molecular graphs
Nicola De Cao
Thomas Kipf
GNN
GAN
100
917
0
30 May 2018
Constrained Graph Variational Autoencoders for Molecule Design
Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
BDL
53
453
0
23 May 2018
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
205
183
0
30 Apr 2018
Syntax-Directed Variational Autoencoder for Structured Data
H. Dai
Yingtao Tian
Bo Dai
Steven Skiena
Le Song
74
324
0
24 Feb 2018
NeVAE: A Deep Generative Model for Molecular Graphs
Bidisha Samanta
A. De
G. Jana
P. Chattaraj
Niloy Ganguly
Manuel Gomez Rodriguez
GNN
DRL
BDL
DiffM
50
214
0
14 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
286
1,358
0
12 Feb 2018
GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
M. Simonovsky
N. Komodakis
GNN
BDL
81
842
0
09 Feb 2018
Multi-Objective De Novo Drug Design with Conditional Graph Generative Model
Yibo Li
L. Zhang
Zhenming Liu
52
337
0
18 Jan 2018
Deep Reinforcement Learning for De-Novo Drug Design
Mariya Popova
Olexandr Isayev
Alexander Tropsha
54
1,017
0
29 Nov 2017
Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models
G. L. Guimaraes
Benjamín Sánchez-Lengeling
Carlos Outeiral
Pedro Luis Cunha Farias
Alán Aspuru-Guzik
GAN
65
523
0
30 May 2017
Molecular De Novo Design through Deep Reinforcement Learning
Marcus Olivecrona
T. Blaschke
Ola Engkvist
Hongming Chen
BDL
92
1,003
0
25 Apr 2017
Grammar Variational Autoencoder
Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
BDL
DRL
58
838
0
06 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
108
5,920
0
04 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
343
3,742
0
28 Feb 2017
Generating Focussed Molecule Libraries for Drug Discovery with Recurrent Neural Networks
Marwin H. S. Segler
T. Kogej
C. Tyrchan
M. Waller
75
96
0
05 Jan 2017
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
114
2,911
0
07 Oct 2016
Rationalizing Neural Predictions
Tao Lei
Regina Barzilay
Tommi Jaakkola
81
807
0
13 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
478
16,765
0
16 Feb 2016
1