ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.03244
  4. Cited By
Multi-Objective Molecule Generation using Interpretable Substructures

Multi-Objective Molecule Generation using Interpretable Substructures

8 February 2020
Wengong Jin
Regina Barzilay
Tommi Jaakkola
ArXivPDFHTML

Papers citing "Multi-Objective Molecule Generation using Interpretable Substructures"

28 / 28 papers shown
Title
Learning Graph Models for Retrosynthesis Prediction
Learning Graph Models for Retrosynthesis Prediction
Vignesh Ram Somnath
Charlotte Bunne
Connor W. Coley
Andreas Krause
Regina Barzilay
46
92
0
12 Jun 2020
Discrete Object Generation with Reversible Inductive Construction
Discrete Object Generation with Reversible Inductive Construction
Ari Seff
Wenda Zhou
Farhan N. Damani
A. Doyle
Ryan P. Adams
38
30
0
18 Jul 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
109
1,300
0
10 Mar 2019
Functional Transparency for Structured Data: a Game-Theoretic Approach
Functional Transparency for Structured Data: a Game-Theoretic Approach
Guang-He Lee
Wengong Jin
David Alvarez-Melis
Tommi Jaakkola
31
19
0
26 Feb 2019
Learning Multimodal Graph-to-Graph Translation for Molecular
  Optimization
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
67
226
0
03 Dec 2018
Using Attribution to Decode Dataset Bias in Neural Network Models for
  Chemistry
Using Attribution to Decode Dataset Bias in Neural Network Models for Chemistry
Kevin McCloskey
Ankur Taly
Federico Monti
M. Brenner
Lucy J. Colwell
36
85
0
27 Nov 2018
Optimization of Molecules via Deep Reinforcement Learning
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
68
537
0
19 Oct 2018
Molecular Hypergraph Grammar with its Application to Molecular
  Optimization
Molecular Hypergraph Grammar with its Application to Molecular Optimization
Hiroshi Kajino
34
102
0
08 Sep 2018
Constrained Generation of Semantically Valid Graphs via Regularizing
  Variational Autoencoders
Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders
Tengfei Ma
Jie Chen
Cao Xiao
97
208
0
07 Sep 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
257
895
0
07 Jun 2018
MolGAN: An implicit generative model for small molecular graphs
MolGAN: An implicit generative model for small molecular graphs
Nicola De Cao
Thomas Kipf
GNN
GAN
100
917
0
30 May 2018
Constrained Graph Variational Autoencoders for Molecule Design
Constrained Graph Variational Autoencoders for Molecule Design
Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
BDL
53
453
0
23 May 2018
Conditional molecular design with deep generative models
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
205
183
0
30 Apr 2018
Syntax-Directed Variational Autoencoder for Structured Data
Syntax-Directed Variational Autoencoder for Structured Data
H. Dai
Yingtao Tian
Bo Dai
Steven Skiena
Le Song
74
324
0
24 Feb 2018
NeVAE: A Deep Generative Model for Molecular Graphs
NeVAE: A Deep Generative Model for Molecular Graphs
Bidisha Samanta
A. De
G. Jana
P. Chattaraj
Niloy Ganguly
Manuel Gomez Rodriguez
GNN
DRL
BDL
DiffM
50
214
0
14 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
286
1,358
0
12 Feb 2018
GraphVAE: Towards Generation of Small Graphs Using Variational
  Autoencoders
GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
M. Simonovsky
N. Komodakis
GNN
BDL
81
842
0
09 Feb 2018
Multi-Objective De Novo Drug Design with Conditional Graph Generative
  Model
Multi-Objective De Novo Drug Design with Conditional Graph Generative Model
Yibo Li
L. Zhang
Zhenming Liu
52
337
0
18 Jan 2018
Deep Reinforcement Learning for De-Novo Drug Design
Deep Reinforcement Learning for De-Novo Drug Design
Mariya Popova
Olexandr Isayev
Alexander Tropsha
54
1,017
0
29 Nov 2017
Objective-Reinforced Generative Adversarial Networks (ORGAN) for
  Sequence Generation Models
Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models
G. L. Guimaraes
Benjamín Sánchez-Lengeling
Carlos Outeiral
Pedro Luis Cunha Farias
Alán Aspuru-Guzik
GAN
65
523
0
30 May 2017
Molecular De Novo Design through Deep Reinforcement Learning
Molecular De Novo Design through Deep Reinforcement Learning
Marcus Olivecrona
T. Blaschke
Ola Engkvist
Hongming Chen
BDL
92
1,003
0
25 Apr 2017
Grammar Variational Autoencoder
Grammar Variational Autoencoder
Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
BDL
DRL
58
838
0
06 Mar 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
108
5,920
0
04 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
343
3,742
0
28 Feb 2017
Generating Focussed Molecule Libraries for Drug Discovery with Recurrent
  Neural Networks
Generating Focussed Molecule Libraries for Drug Discovery with Recurrent Neural Networks
Marwin H. S. Segler
T. Kogej
C. Tyrchan
M. Waller
75
96
0
05 Jan 2017
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
114
2,911
0
07 Oct 2016
Rationalizing Neural Predictions
Rationalizing Neural Predictions
Tao Lei
Regina Barzilay
Tommi Jaakkola
81
807
0
13 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
478
16,765
0
16 Feb 2016
1