ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.02913
  4. Cited By
Learning Autoencoders with Relational Regularization

Learning Autoencoders with Relational Regularization

7 February 2020
Hongteng Xu
Dixin Luo
Ricardo Henao
Svati Shah
Lawrence Carin
ArXivPDFHTML

Papers citing "Learning Autoencoders with Relational Regularization"

27 / 27 papers shown
Title
Towards Distribution Matching between Collaborative and Language Spaces for Generative Recommendation
Towards Distribution Matching between Collaborative and Language Spaces for Generative Recommendation
Yi-cui Zhang
Yiwen Zhang
Y. X. R. Wang
Tong Chen
Hongzhi Yin
41
0
0
10 Apr 2025
An Information-Theoretic Regularizer for Lossy Neural Image Compression
An Information-Theoretic Regularizer for Lossy Neural Image Compression
Yanmei Zhang
Meng Wang
Xihua Sheng
Peilin Chen
Junru Li
Li Zhang
Shuaiqiang Wang
308
0
0
23 Nov 2024
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
51
10,591
0
17 Feb 2020
Gromov-Wasserstein Factorization Models for Graph Clustering
Gromov-Wasserstein Factorization Models for Graph Clustering
Hongteng Xu
30
49
0
19 Nov 2019
Hierarchical Optimal Transport for Multimodal Distribution Alignment
Hierarchical Optimal Transport for Multimodal Distribution Alignment
John Lee
M. Dabagia
Eva L. Dyer
Christopher Rozell
OT
20
65
0
27 Jun 2019
Hierarchical Optimal Transport for Document Representation
Hierarchical Optimal Transport for Document Representation
Mikhail Yurochkin
Sebastian Claici
Edward Chien
F. Mirzazadeh
Justin Solomon
OT
26
90
0
26 Jun 2019
Sliced Gromov-Wasserstein
Sliced Gromov-Wasserstein
Titouan Vayer
Rémi Flamary
Romain Tavenard
Laetitia Chapel
Nicolas Courty
OT
11
100
0
24 May 2019
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
Hongteng Xu
Dixin Luo
Lawrence Carin
28
192
0
18 May 2019
Learning Generative Models across Incomparable Spaces
Learning Generative Models across Incomparable Spaces
Charlotte Bunne
David Alvarez-Melis
Andreas Krause
Stefanie Jegelka
GAN
25
112
0
14 May 2019
Topic-Guided Variational Autoencoders for Text Generation
Topic-Guided Variational Autoencoders for Text Generation
Wenlin Wang
Zhe Gan
Hongteng Xu
Ruiyi Zhang
Guoyin Wang
Dinghan Shen
Changyou Chen
Lawrence Carin
BDL
46
127
0
17 Mar 2019
Gromov-Wasserstein Learning for Graph Matching and Node Embedding
Gromov-Wasserstein Learning for Graph Matching and Node Embedding
Hongteng Xu
Dixin Luo
H. Zha
Lawrence Carin
42
256
0
17 Jan 2019
Fused Gromov-Wasserstein distance for structured objects: theoretical
  foundations and mathematical properties
Fused Gromov-Wasserstein distance for structured objects: theoretical foundations and mathematical properties
David Tellez
G. Litjens
J. A. van der Laak
R. Tavenard
F. Ciompi
OT
52
125
0
07 Nov 2018
Variational Autoencoder with Implicit Optimal Priors
Variational Autoencoder with Implicit Optimal Priors
Hiroshi Takahashi
Tomoharu Iwata
Yuki Yamanaka
Masanori Yamada
Satoshi Yagi
DRL
39
62
0
14 Sep 2018
Gromov-Wasserstein Alignment of Word Embedding Spaces
Gromov-Wasserstein Alignment of Word Embedding Spaces
David Alvarez-Melis
Tommi Jaakkola
OT
24
326
0
31 Aug 2018
Optimal Transport for structured data with application on graphs
Optimal Transport for structured data with application on graphs
Titouan Vayer
Laetitia Chapel
Rémi Flamary
R. Tavenard
Nicolas Courty
OT
27
270
0
23 May 2018
Sliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative
  Model
Sliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative Model
Soheil Kolouri
Phillip E. Pope
Charles E. Martin
Gustavo K. Rohde
17
94
0
05 Apr 2018
Wasserstein Auto-Encoders
Wasserstein Auto-Encoders
Ilya O. Tolstikhin
Olivier Bousquet
Sylvain Gelly
B. Schölkopf
DRL
76
1,049
0
05 Nov 2017
VAE with a VampPrior
VAE with a VampPrior
Jakub M. Tomczak
Max Welling
GAN
BDL
45
628
0
19 May 2017
Deep Unsupervised Clustering with Gaussian Mixture Variational
  Autoencoders
Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders
Nat Dilokthanakul
P. Mediano
M. Garnelo
M. J. Lee
Hugh Salimbeni
Kai Arulkumaran
Murray Shanahan
DRL
27
651
0
08 Nov 2016
Multi-view Generative Adversarial Networks
Multi-view Generative Adversarial Networks
Mickaël Chen
Ludovic Denoyer
GAN
33
30
0
07 Nov 2016
On Deep Multi-View Representation Learning: Objectives and Optimization
On Deep Multi-View Representation Learning: Objectives and Optimization
Weiran Wang
R. Arora
Karen Livescu
J. Bilmes
SSL
DRL
26
909
0
02 Feb 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
197
13,968
0
19 Nov 2015
Generating Sentences from a Continuous Space
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
45
2,352
0
19 Nov 2015
Sliced Wasserstein Kernels for Probability Distributions
Sliced Wasserstein Kernels for Probability Distributions
Soheil Kolouri
Yang Zou
Gustavo K. Rohde
18
159
0
10 Nov 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
99
149,474
0
22 Dec 2014
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
149
8,351
0
28 Nov 2014
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
46
4,210
0
04 Jun 2013
1