Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.02886
Cited By
Weakly-Supervised Disentanglement Without Compromises
7 February 2020
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Weakly-Supervised Disentanglement Without Compromises"
20 / 70 papers shown
Title
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Jackson Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
36
7
0
29 Dec 2021
On Causally Disentangled Representations
Abbavaram Gowtham Reddy
Benin Godfrey L
V. Balasubramanian
OOD
CML
34
21
0
10 Dec 2021
Unsupervised Learning of Compositional Energy Concepts
Yilun Du
Shuang Li
Yash Sharma
J. Tenenbaum
Igor Mordatch
CoGe
OCL
21
76
0
04 Nov 2021
Properties from Mechanisms: An Equivariance Perspective on Identifiable Representation Learning
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
26
38
0
29 Oct 2021
SpectroscopyNet: Learning to pre-process Spectroscopy Signals without clean data
Juan Castorena
Diane Oyen
16
0
0
26 Oct 2021
Group-disentangled Representation Learning with Weakly-Supervised Regularization
Linh-Tam Tran
Amir Hosein Khasahmadi
Aditya Sanghi
Saeid Asgari Taghanaki
DRL
34
1
0
23 Oct 2021
Contrastively Disentangled Sequential Variational Autoencoder
M. Kiener
Weiran Wang
Michael Gerndt
CoGe
DRL
24
40
0
22 Oct 2021
Identifiable Deep Generative Models via Sparse Decoding
Gemma E. Moran
Dhanya Sridhar
Yixin Wang
David M. Blei
BDL
28
44
0
20 Oct 2021
Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational Autoencoders
Lisa Bonheme
M. Grzes
DRL
13
6
0
26 Sep 2021
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
32
80
0
08 Sep 2021
Counterfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests
Victor Veitch
Alexander DÁmour
Steve Yadlowsky
Jacob Eisenstein
OOD
16
91
0
31 May 2021
Where and What? Examining Interpretable Disentangled Representations
Xinqi Zhu
Chang Xu
Dacheng Tao
FAtt
DRL
48
38
0
07 Apr 2021
Beyond Trivial Counterfactual Explanations with Diverse Valuable Explanations
Pau Rodríguez López
Massimo Caccia
Alexandre Lacoste
L. Zamparo
I. Laradji
Laurent Charlin
David Vazquez
AAML
34
55
0
18 Mar 2021
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
238
207
0
17 Feb 2021
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
32
104
0
03 Nov 2020
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
33
80
0
27 Oct 2020
Causal Curiosity: RL Agents Discovering Self-supervised Experiments for Causal Representation Learning
S. Sontakke
Arash Mehrjou
Laurent Itti
Bernhard Schölkopf
CML
17
60
0
07 Oct 2020
Deep Anomaly Detection by Residual Adaptation
Lucas Deecke
Lukas Ruff
Robert A. Vandermeulen
Hakan Bilen
UQCV
23
4
0
05 Oct 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
45
132
0
21 Jul 2020
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
Previous
1
2