ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.01184
  4. Cited By
tfp.mcmc: Modern Markov Chain Monte Carlo Tools Built for Modern
  Hardware

tfp.mcmc: Modern Markov Chain Monte Carlo Tools Built for Modern Hardware

4 February 2020
Junpeng Lao
Christopher Suter
I. Langmore
C. Chimisov
A. Saxena
Pavel Sountsov
Dave Moore
Rif A. Saurous
Matthew D. Hoffman
Joshua V. Dillon
ArXivPDFHTML

Papers citing "tfp.mcmc: Modern Markov Chain Monte Carlo Tools Built for Modern Hardware"

21 / 21 papers shown
Title
Incorporating the ChEES Criterion into Sequential Monte Carlo Samplers
Incorporating the ChEES Criterion into Sequential Monte Carlo Samplers
Andrew Millard
Joshua Murphy
Daniel Frisch
Simon Maskell
BDL
43
0
0
03 Apr 2025
Efficiently Vectorized MCMC on Modern Accelerators
Efficiently Vectorized MCMC on Modern Accelerators
Hugh Dance
Pierre Glaser
Peter Orbanz
Ryan P. Adams
52
0
0
20 Mar 2025
Running Markov Chain Monte Carlo on Modern Hardware and Software
Running Markov Chain Monte Carlo on Modern Hardware and Software
Pavel Sountsov
Colin Carroll
Matthew D. Hoffman
BDL
39
2
0
06 Nov 2024
Amortized Bayesian Multilevel Models
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Burkner
67
3
0
23 Aug 2024
Learning to Explore for Stochastic Gradient MCMC
Learning to Explore for Stochastic Gradient MCMC
Seunghyun Kim
Seohyeon Jung
Seonghyeon Kim
Juho Lee
BDL
48
1
0
17 Aug 2024
A non-asymptotic error analysis for parallel Monte Carlo estimation from
  many short Markov chains
A non-asymptotic error analysis for parallel Monte Carlo estimation from many short Markov chains
Austin Brown
17
0
0
31 Jan 2024
For how many iterations should we run Markov chain Monte Carlo?
For how many iterations should we run Markov chain Monte Carlo?
C. Margossian
Andrew Gelman
19
6
0
05 Nov 2023
Adaptive Tuning for Metropolis Adjusted Langevin Trajectories
Adaptive Tuning for Metropolis Adjusted Langevin Trajectories
L. Riou-Durand
Pavel Sountsov
Jure Vogrinc
C. Margossian
Samuel Power
32
6
0
21 Oct 2022
Liesel: A Probabilistic Programming Framework for Developing
  Semi-Parametric Regression Models and Custom Bayesian Inference Algorithms
Liesel: A Probabilistic Programming Framework for Developing Semi-Parametric Regression Models and Custom Bayesian Inference Algorithms
Hannes Riebl
P. Wiemann
Thomas Kneib
8
2
0
22 Sep 2022
NeuralUQ: A comprehensive library for uncertainty quantification in
  neural differential equations and operators
NeuralUQ: A comprehensive library for uncertainty quantification in neural differential equations and operators
Zongren Zou
Xuhui Meng
Apostolos F. Psaros
George Karniadakis
AI4CE
25
36
0
25 Aug 2022
Mesh-free Eulerian Physics-Informed Neural Networks
Mesh-free Eulerian Physics-Informed Neural Networks
F. A. Torres
M. Negri
Monika Nagy-Huber
M. Samarin
Volker Roth
PINN
AI4CE
13
5
0
03 Jun 2022
A quantum parallel Markov chain Monte Carlo
A quantum parallel Markov chain Monte Carlo
Andrew J Holbrook
11
7
0
01 Dec 2021
Entropy-based adaptive Hamiltonian Monte Carlo
Entropy-based adaptive Hamiltonian Monte Carlo
Marcel Hirt
Michalis K. Titsias
P. Dellaportas
BDL
37
7
0
27 Oct 2021
Learning Functional Priors and Posteriors from Data and Physics
Learning Functional Priors and Posteriors from Data and Physics
Xuhui Meng
Liu Yang
Zhiping Mao
J. Ferrandis
George Karniadakis
AI4CE
27
61
0
08 Jun 2021
What Are Bayesian Neural Network Posteriors Really Like?
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
17
366
0
29 Apr 2021
Hamiltonian Monte Carlo in Inverse Problems; Ill-Conditioning and
  Multi-Modality
Hamiltonian Monte Carlo in Inverse Problems; Ill-Conditioning and Multi-Modality
I. Langmore
M. Dikovsky
S. Geraedts
Peter C. Norgaard
R. V. Behren
22
7
0
12 Mar 2021
VIB is Half Bayes
VIB is Half Bayes
Alexander A. Alemi
Warren Morningstar
Ben Poole
Ian S. Fischer
Joshua V. Dillon
BDL
11
2
0
17 Nov 2020
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Wavelet Flow: Fast Training of High Resolution Normalizing Flows
Jason J. Yu
Konstantinos G. Derpanis
Marcus A. Brubaker
TPM
24
41
0
26 Oct 2020
FunMC: A functional API for building Markov Chains
FunMC: A functional API for building Markov Chains
Pavel Sountsov
Alexey Radul
Srinivas Vasudevan
19
1
0
14 Jan 2020
A Condition Number for Hamiltonian Monte Carlo
A Condition Number for Hamiltonian Monte Carlo
I. Langmore
M. Dikovsky
S. Geraedts
Peter C. Norgaard
R. V. Behren
18
6
0
23 May 2019
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,266
0
09 Jun 2012
1