Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.11946
Cited By
A Hybrid Quantum enabled RBM Advantage: Convolutional Autoencoders For Quantum Image Compression and Generative Learning
31 January 2020
Jennifer Sleeman
J. Dorband
M. Halem
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Hybrid Quantum enabled RBM Advantage: Convolutional Autoencoders For Quantum Image Compression and Generative Learning"
7 / 7 papers shown
Title
A Path Towards Quantum Advantage in Training Deep Generative Models with Quantum Annealers
Walter Winci
L. Buffoni
Hossein Sadeghi
Amir Khoshaman
Evgeny Andriyash
Mohammad H. Amin
BDL
DRL
45
59
0
04 Dec 2019
Quantum Variational Autoencoder
Amir Khoshaman
W. Vinci
Brandon Denis
Evgeny Andriyash
Hossein Sadeghi
Mohammad H. Amin
BDL
DRL
49
177
0
15 Feb 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
283
8,883
0
25 Aug 2017
Nonnegative/binary matrix factorization with a D-Wave quantum annealer
Daniel O’Malley
V. Vesselinov
Boian S. Alexandrov
L. Alexandrov
43
107
0
05 Apr 2017
Deep Restricted Boltzmann Networks
Hengyuan Hu
Lisheng Gao
Quanbin Ma
BDL
AI4CE
40
15
0
15 Nov 2016
Application of Quantum Annealing to Training of Deep Neural Networks
S. Adachi
Maxwell P. Henderson
BDL
52
239
0
21 Oct 2015
On the Challenges of Physical Implementations of RBMs
Vincent Dumoulin
Ian Goodfellow
Aaron Courville
Yoshua Bengio
AI4CE
69
60
0
18 Dec 2013
1