Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.08682
Cited By
Expected Information Maximization: Using the I-Projection for Mixture Density Estimation
23 January 2020
P. Becker
Oleg Arenz
Gerhard Neumann
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Expected Information Maximization: Using the I-Projection for Mixture Density Estimation"
22 / 22 papers shown
Title
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
422
10,591
0
17 Feb 2020
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Chunyuan Li
Ke Bai
Jianqiao Li
Guoyin Wang
Changyou Chen
Lawrence Carin
132
10
0
03 Jan 2019
Maximum a Posteriori Policy Optimisation
A. Abdolmaleki
Jost Tobias Springenberg
Yuval Tassa
Rémi Munos
N. Heess
Martin Riedmiller
71
477
0
14 Jun 2018
On GANs and GMMs
Eitan Richardson
Yair Weiss
GAN
172
151
0
31 May 2018
Symmetric Variational Autoencoder and Connections to Adversarial Learning
Liqun Chen
Shuyang Dai
Yunchen Pu
Chunyuan Li
Weiyao Wang
Lawrence Carin
DRL
GAN
78
71
0
06 Sep 2017
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
517
19,065
0
20 Jul 2017
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
207
9,548
0
31 Mar 2017
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
172
4,826
0
26 Jan 2017
Improved generator objectives for GANs
Ben Poole
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
A. Angelova
56
69
0
08 Dec 2016
Generative Adversarial Nets from a Density Ratio Estimation Perspective
Masatoshi Uehara
Issei Sato
Masahiro Suzuki
Kotaro Nakayama
Y. Matsuo
GAN
83
104
0
10 Oct 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
159
4,235
0
12 Jun 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
154
1,656
0
02 Jun 2016
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
433
18,361
0
27 May 2016
Auxiliary Deep Generative Models
Lars Maaløe
C. Sønderby
Søren Kaae Sønderby
Ole Winther
DRL
GAN
75
451
0
17 Feb 2016
How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?
Ferenc Huszár
OOD
DiffM
GAN
87
297
0
16 Nov 2015
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
83
338
0
07 Nov 2015
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
277
6,776
0
19 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Minimum scoring rule inference
A. Dawid
M. Musio
L. Ventura
65
68
0
16 Mar 2014
Inferring Parameters and Structure of Latent Variable Models by Variational Bayes
H. Attias
CML
BDL
71
666
0
23 Jan 2013
Relative Density-Ratio Estimation for Robust Distribution Comparison
M. Yamada
Taiji Suzuki
Takafumi Kanamori
Hirotaka Hachiya
Masashi Sugiyama
92
221
0
23 Jun 2011
Estimating divergence functionals and the likelihood ratio by convex risk minimization
X. Nguyen
Martin J. Wainwright
Michael I. Jordan
225
803
0
04 Sep 2008
1