ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.08682
  4. Cited By
Expected Information Maximization: Using the I-Projection for Mixture
  Density Estimation

Expected Information Maximization: Using the I-Projection for Mixture Density Estimation

23 January 2020
P. Becker
Oleg Arenz
Gerhard Neumann
ArXiv (abs)PDFHTML

Papers citing "Expected Information Maximization: Using the I-Projection for Mixture Density Estimation"

22 / 22 papers shown
Title
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
422
10,591
0
17 Feb 2020
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Chunyuan Li
Ke Bai
Jianqiao Li
Guoyin Wang
Changyou Chen
Lawrence Carin
132
10
0
03 Jan 2019
Maximum a Posteriori Policy Optimisation
Maximum a Posteriori Policy Optimisation
A. Abdolmaleki
Jost Tobias Springenberg
Yuval Tassa
Rémi Munos
N. Heess
Martin Riedmiller
71
477
0
14 Jun 2018
On GANs and GMMs
On GANs and GMMs
Eitan Richardson
Yair Weiss
GAN
172
151
0
31 May 2018
Symmetric Variational Autoencoder and Connections to Adversarial
  Learning
Symmetric Variational Autoencoder and Connections to Adversarial Learning
Liqun Chen
Shuyang Dai
Yunchen Pu
Chunyuan Li
Weiyao Wang
Lawrence Carin
DRLGAN
78
71
0
06 Sep 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
517
19,065
0
20 Jul 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
207
9,548
0
31 Mar 2017
Wasserstein GAN
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
172
4,826
0
26 Jan 2017
Improved generator objectives for GANs
Improved generator objectives for GANs
Ben Poole
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
A. Angelova
56
69
0
08 Dec 2016
Generative Adversarial Nets from a Density Ratio Estimation Perspective
Generative Adversarial Nets from a Density Ratio Estimation Perspective
Masatoshi Uehara
Issei Sato
Masahiro Suzuki
Kotaro Nakayama
Y. Matsuo
GAN
83
104
0
10 Oct 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
159
4,235
0
12 Jun 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
154
1,656
0
02 Jun 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNNAI4CE
433
18,361
0
27 May 2016
Auxiliary Deep Generative Models
Auxiliary Deep Generative Models
Lars Maaløe
C. Sønderby
Søren Kaae Sønderby
Ole Winther
DRLGAN
75
451
0
17 Feb 2016
How (not) to Train your Generative Model: Scheduled Sampling,
  Likelihood, Adversary?
How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?
Ferenc Huszár
OODDiffMGAN
87
297
0
16 Nov 2015
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRLVLM
83
338
0
07 Nov 2015
Trust Region Policy Optimization
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
277
6,776
0
19 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Minimum scoring rule inference
Minimum scoring rule inference
A. Dawid
M. Musio
L. Ventura
65
68
0
16 Mar 2014
Inferring Parameters and Structure of Latent Variable Models by
  Variational Bayes
Inferring Parameters and Structure of Latent Variable Models by Variational Bayes
H. Attias
CMLBDL
71
666
0
23 Jan 2013
Relative Density-Ratio Estimation for Robust Distribution Comparison
Relative Density-Ratio Estimation for Robust Distribution Comparison
M. Yamada
Taiji Suzuki
Takafumi Kanamori
Hirotaka Hachiya
Masashi Sugiyama
92
221
0
23 Jun 2011
Estimating divergence functionals and the likelihood ratio by convex
  risk minimization
Estimating divergence functionals and the likelihood ratio by convex risk minimization
X. Nguyen
Martin J. Wainwright
Michael I. Jordan
225
803
0
04 Sep 2008
1