Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.07457
Cited By
Learning to Control PDEs with Differentiable Physics
21 January 2020
Philipp Holl
V. Koltun
Nils Thuerey
AI4CE
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning to Control PDEs with Differentiable Physics"
20 / 120 papers shown
Title
Neural Particle Image Velocimetry
N. Stulov
Michael Chertkov
9
7
0
28 Jan 2021
DiffPD: Differentiable Projective Dynamics
Tao Du
Kui Wu
Pingchuan Ma
Sebastien Wah
Andrew Spielberg
Daniela Rus
Wojciech Matusik
18
94
0
15 Jan 2021
How to Train Your Differentiable Filter
Alina Kloss
Georg Martius
Jeannette Bohg
36
46
0
28 Dec 2020
Teaching the Incompressible Navier-Stokes Equations to Fast Neural Surrogate Models in 3D
Nils Wandel
Michael Weinmann
Reinhard Klein
AI4CE
26
50
0
22 Dec 2020
On The Verification of Neural ODEs with Stochastic Guarantees
Sophie Gruenbacher
Ramin Hasani
Mathias Lechner
J. Cyranka
S. Smolka
Radu Grosu
66
31
0
16 Dec 2020
DPM: A Novel Training Method for Physics-Informed Neural Networks in Extrapolation
Jungeun Kim
Kookjin Lee
Dongeun Lee
Sheo Yon Jin
Noseong Park
PINN
AI4CE
12
77
0
04 Dec 2020
Scalable Differentiable Physics for Learning and Control
Yi-Ling Qiao
Junbang Liang
V. Koltun
Ming Lin
PINN
AI4CE
22
118
0
04 Jul 2020
ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact
Moritz Geilinger
D. Hahn
Jonas Zehnder
M. Bacher
B. Thomaszewski
Stelian Coros
AI4CE
14
41
0
02 Jul 2020
Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers
Kiwon Um
R. Brand
Yun Fei
Fei
Philipp Holl
N. Thürey
AI4CE
19
256
0
30 Jun 2020
Learning Physical Constraints with Neural Projections
Shuqi Yang
Xingzhe He
Bo Zhu
3DV
AI4CE
25
25
0
23 Jun 2020
Neural Ordinary Differential Equation Control of Dynamics on Graphs
Thomas Asikis
Lucas Böttcher
Nino Antulov-Fantulin
25
42
0
17 Jun 2020
Learning Incompressible Fluid Dynamics from Scratch -- Towards Fast, Differentiable Fluid Models that Generalize
Nils Wandel
Michael Weinmann
Reinhard Klein
AI4CE
11
8
0
15 Jun 2020
Liquid Time-constant Networks
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
Radu Grosu
AI4TS
AI4CE
14
215
0
08 Jun 2020
Learning Long-Term Dependencies in Irregularly-Sampled Time Series
Mathias Lechner
Ramin Hasani
AI4TS
12
127
0
08 Jun 2020
Neural Vortex Method: from Finite Lagrangian Particles to Infinite Dimensional Eulerian Dynamics
S. Xiong
Xingzhe He
Yunjin Tong
Yitong Deng
Bo Zhu
14
11
0
07 Jun 2020
Lagrangian Neural Style Transfer for Fluids
Byungsoo Kim
Vinicius Azevedo
Markus Gross
B. Solenthaler
28
37
0
02 May 2020
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
100
49
0
27 Feb 2020
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
PINN
AI4CE
51
1,046
0
21 Feb 2020
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
43
2,009
0
08 Oct 2019
SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
Connor Schenck
D. Fox
PINN
3DPC
AI4CE
172
161
0
15 Jun 2018
Previous
1
2
3