ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.05279
  4. Cited By
DGCM-Net: Dense Geometrical Correspondence Matching Network for
  Incremental Experience-based Robotic Grasping

DGCM-Net: Dense Geometrical Correspondence Matching Network for Incremental Experience-based Robotic Grasping

15 January 2020
T. Patten
Kiru Park
Markus Vincze
ArXivPDFHTML

Papers citing "DGCM-Net: Dense Geometrical Correspondence Matching Network for Incremental Experience-based Robotic Grasping"

5 / 5 papers shown
Title
Perceiving Unseen 3D Objects by Poking the Objects
Perceiving Unseen 3D Objects by Poking the Objects
Linghao Chen
Yunzhou Song
Hujun Bao
Xiaowei Zhou
42
9
0
26 Feb 2023
COPE: End-to-end trainable Constant Runtime Object Pose Estimation
COPE: End-to-end trainable Constant Runtime Object Pose Estimation
S. Thalhammer
T. Patten
Markus Vincze
3DPC
28
14
0
18 Aug 2022
Deep Learning Approaches to Grasp Synthesis: A Review
Deep Learning Approaches to Grasp Synthesis: A Review
Rhys Newbury
Morris Gu
Lachlan Chumbley
Arsalan Mousavian
Clemens Eppner
...
A. Morales
Tamim Asfour
Danica Kragic
Dieter Fox
Akansel Cosgun
40
162
0
06 Jul 2022
CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from
  Simulation
CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation
Bowen Wen
Wenzhao Lian
Kostas Bekris
S. Schaal
24
74
0
19 Sep 2021
Transferring End-to-End Visuomotor Control from Simulation to Real World
  for a Multi-Stage Task
Transferring End-to-End Visuomotor Control from Simulation to Real World for a Multi-Stage Task
Stephen James
Andrew J. Davison
Edward Johns
162
275
0
07 Jul 2017
1