ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.04990
  4. Cited By
Anomaly Detection with Density Estimation

Anomaly Detection with Density Estimation

14 January 2020
Benjamin Nachman
David Shih
ArXivPDFHTML

Papers citing "Anomaly Detection with Density Estimation"

29 / 29 papers shown
Title
TRANSIT your events into a new mass: Fast background interpolation for weakly-supervised anomaly searches
TRANSIT your events into a new mass: Fast background interpolation for weakly-supervised anomaly searches
Ivan Oleksiyuk
Svyatoslav Voloshynovskiy
Tobias Golling
DiffM
68
0
0
06 Mar 2025
Unifying Simulation and Inference with Normalizing Flows
Unifying Simulation and Inference with Normalizing Flows
Haoxing Du
Claudius Krause
Vinicius Mikuni
Benjamin Nachman
Ian Pang
David Shih
161
4
0
29 Apr 2024
Simulation Assisted Likelihood-free Anomaly Detection
Simulation Assisted Likelihood-free Anomaly Detection
Anders Andreassen
Benjamin Nachman
David Shih
45
112
0
14 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
493
42,407
0
03 Dec 2019
How to GAN away Detector Effects
How to GAN away Detector Effects
Marco Bellagente
A. Butter
Gregor Kasieczka
Tilman Plehn
R. Winterhalder
GAN
43
87
0
01 Dec 2019
Lund jet images from generative and cycle-consistent adversarial
  networks
Lund jet images from generative and cycle-consistent adversarial networks
Stefano Carrazza
F. Dreyer
GAN
44
49
0
03 Sep 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
176
774
0
10 Jun 2019
Flow-based generative models for Markov chain Monte Carlo in lattice
  field theory
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
51
218
0
26 Apr 2019
Cherenkov Detectors Fast Simulation Using Neural Networks
Cherenkov Detectors Fast Simulation Using Neural Networks
D. Derkach
N. Kazeev
Fedor Ratnikov
Andrey Ustyuzhanin
Alexandra Volokhova
41
28
0
28 Mar 2019
LHC analysis-specific datasets with Generative Adversarial Networks
LHC analysis-specific datasets with Generative Adversarial Networks
B. Hashemi
N. Amin
Kaustuv Datta
D. Olivito
M. Pierini
GAN
26
86
0
16 Jan 2019
Generative Models for Fast Calorimeter Simulation.LHCb case
Generative Models for Fast Calorimeter Simulation.LHCb case
V. Chekalina
Elena Orlova
Fedor Ratnikov
Dmitry Ulyanov
Andrey Ustyuzhanin
Egor Zakharov
AI4CE
46
68
0
04 Dec 2018
Variational Autoencoders for New Physics Mining at the Large Hadron
  Collider
Variational Autoencoders for New Physics Mining at the Large Hadron Collider
O. Cerri
Thong Q. Nguyen
M. Pierini
M. Spiropulu
J. Vlimant
DRL
38
144
0
26 Nov 2018
GANs for generating EFT models
GANs for generating EFT models
Harold Erbin
Sven Krippendorf
GAN
44
28
0
06 Sep 2018
Novelty Detection Meets Collider Physics
Novelty Detection Meets Collider Physics
Jan Hajer
Ying-Ying Li
Tao Liu
He Wang
85
103
0
26 Jul 2018
JUNIPR: a Framework for Unsupervised Machine Learning in Particle
  Physics
JUNIPR: a Framework for Unsupervised Machine Learning in Particle Physics
Anders Andreassen
Ilya Feige
Christopher Frye
M. Schwartz
MU
68
137
0
25 Apr 2018
Neural Autoregressive Flows
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
143
442
0
03 Apr 2018
CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer
  Electromagnetic Calorimeters with Generative Adversarial Networks
CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks
Michela Paganini
Luke de Oliveira
Benjamin Nachman
AI4CE
GAN
48
316
0
21 Dec 2017
Classification without labels: Learning from mixed samples in high
  energy physics
Classification without labels: Learning from mixed samples in high energy physics
E. Metodiev
Benjamin Nachman
Jesse Thaler
CML
50
206
0
09 Aug 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
207
1,352
0
19 May 2017
Accelerating Science with Generative Adversarial Networks: An
  Application to 3D Particle Showers in Multi-Layer Calorimeters
Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multi-Layer Calorimeters
Michela Paganini
Luke de Oliveira
Benjamin Nachman
AI4CE
50
222
0
05 May 2017
Decorrelated Jet Substructure Tagging using Adversarial Neural Networks
Decorrelated Jet Substructure Tagging using Adversarial Neural Networks
C. Shimmin
Peter Sadowski
Pierre Baldi
E. Weik
D. Whiteson
Edward Goul
A. Søgaard
GAN
47
114
0
10 Mar 2017
Learning Particle Physics by Example: Location-Aware Generative
  Adversarial Networks for Physics Synthesis
Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis
Luke de Oliveira
Michela Paganini
Benjamin Nachman
GAN
AI4CE
51
288
0
20 Jan 2017
Learning to Pivot with Adversarial Networks
Learning to Pivot with Adversarial Networks
Gilles Louppe
Michael Kagan
Kyle Cranmer
63
227
0
03 Nov 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
137
1,818
0
15 Jun 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
433
18,350
0
27 May 2016
Neural Autoregressive Distribution Estimation
Neural Autoregressive Distribution Estimation
Benigno Uria
Marc-Alexandre Côté
Karol Gregor
Iain Murray
Hugo Larochelle
76
314
0
07 May 2016
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
313
4,179
0
21 May 2015
MADE: Masked Autoencoder for Distribution Estimation
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OOD
SyDa
UQCV
170
867
0
12 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
1