ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.02728
  4. Cited By
Learning Generative Models using Denoising Density Estimators

Learning Generative Models using Denoising Density Estimators

8 January 2020
Siavash Bigdeli
Geng Lin
Tiziano Portenier
L. A. Dunbar
Matthias Zwicker
    DiffM
ArXivPDFHTML

Papers citing "Learning Generative Models using Denoising Density Estimators"

21 / 21 papers shown
Title
Accelerate TarFlow Sampling with GS-Jacobi Iteration
Accelerate TarFlow Sampling with GS-Jacobi Iteration
Ben Liu
Zhen Qin
41
0
0
19 May 2025
Soft Diffusion: Score Matching for General Corruptions
Soft Diffusion: Score Matching for General Corruptions
Giannis Daras
M. Delbracio
Hossein Talebi
A. Dimakis
P. Milanfar
DiffM
80
108
0
12 Sep 2022
AdaCat: Adaptive Categorical Discretization for Autoregressive Models
AdaCat: Adaptive Categorical Discretization for Autoregressive Models
Qiyang Li
Ajay Jain
Pieter Abbeel
OffRL
51
4
0
03 Aug 2022
Marginalizable Density Models
Marginalizable Density Models
D. Gilboa
Ari Pakman
Thibault Vatter
BDL
36
5
0
08 Jun 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
36
111
0
08 Mar 2021
Image Restoration using Plug-and-Play CNN MAP Denoisers
Image Restoration using Plug-and-Play CNN MAP Denoisers
Siavash Bigdeli
David Honzátko
Sabine Süsstrunk
L. A. Dunbar
27
8
0
18 Dec 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
119
3,803
0
12 Jul 2019
Sliced Score Matching: A Scalable Approach to Density and Score
  Estimation
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
52
409
0
17 May 2019
Exponential Family Estimation via Adversarial Dynamics Embedding
Exponential Family Estimation via Adversarial Dynamics Embedding
Bo Dai
Ziqiang Liu
H. Dai
Niao He
Arthur Gretton
Le Song
Dale Schuurmans
31
53
0
27 Apr 2019
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward
  Energy-Based Model
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model
Erik Nijkamp
Mitch Hill
Song-Chun Zhu
Ying Nian Wu
41
210
0
22 Apr 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
474
10,466
0
12 Dec 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
40
861
0
02 Oct 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
173
3,110
0
09 Jul 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
168
5,024
0
19 Jun 2018
Neural Autoregressive Flows
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
57
436
0
03 Apr 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
69
8,807
0
25 Aug 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
71
9,509
0
31 Mar 2017
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
39
1,082
0
16 Aug 2016
Improved Techniques for Training GANs
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
304
8,999
0
10 Jun 2016
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
47
1,648
0
02 Jun 2016
MADE: Masked Autoencoder for Distribution Estimation
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OOD
SyDa
UQCV
78
863
0
12 Feb 2015
1