Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.01796
Cited By
Fair Active Learning
6 January 2020
Hadis Anahideh
Abolfazl Asudeh
Saravanan Thirumuruganathan
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fair Active Learning"
30 / 30 papers shown
Title
Fair Overlap Number of Balls (Fair-ONB): A Data-Morphology-based Undersampling Method for Bias Reduction
José Daniel Pascual-Triana
Alberto Fernández
Paulo Novais
Francisco Herrera
19
0
0
19 Jul 2024
Scoping Review of Active Learning Strategies and their Evaluation Environments for Entity Recognition Tasks
Philipp Kohl
Yoka Krämer
Claudia Fohry
Bodo Kraft
43
3
0
04 Jul 2024
Fairness Without Harm: An Influence-Guided Active Sampling Approach
Jinlong Pang
Jialu Wang
Zhaowei Zhu
Yuanshun Yao
Chen Qian
Yang Liu
TDI
46
2
0
20 Feb 2024
Falcon: Fair Active Learning using Multi-armed Bandits
Ki Hyun Tae
Hantian Zhang
Jaeyoung Park
Kexin Rong
Steven Euijong Whang
FaML
14
2
0
23 Jan 2024
Adaptive Boosting with Fairness-aware Reweighting Technique for Fair Classification
Xiaobin Song
Zeyuan Liu
Benben Jiang
FaML
23
4
0
06 Jan 2024
Fair Active Learning in Low-Data Regimes
Romain Camilleri
Andrew Wagenmaker
Jamie Morgenstern
Lalit P. Jain
Kevin Jamieson
FaML
17
1
0
13 Dec 2023
Benchmarking Multi-Domain Active Learning on Image Classification
Jiayi Li
Rohan Taori
Tatsunori Hashimoto
VLM
32
0
0
01 Dec 2023
Equal Opportunity of Coverage in Fair Regression
Fangxin Wang
Lu Cheng
Ruocheng Guo
Kay Liu
Philip S. Yu
19
14
0
03 Nov 2023
ALE: A Simulation-Based Active Learning Evaluation Framework for the Parameter-Driven Comparison of Query Strategies for NLP
Philipp Kohl
Nils Freyer
Yoka Krämer
H. Werth
Steffen Wolf
Bodo Kraft
Matthias Meinecke
Albert Zündorf
33
1
0
01 Aug 2023
Towards Better Fairness-Utility Trade-off: A Comprehensive Measurement-Based Reinforcement Learning Framework
Simiao Zhang
Jitao Bai
Menghong Guan
Yihao Huang
Yueling Zhang
Jun Sun
G. Pu
FaML
16
1
0
21 Jul 2023
Survey of Federated Learning Models for Spatial-Temporal Mobility Applications
Yacine Belal
Sonia Ben Mokhtar
Hamed Haddadi
Jaron Wang
A. Mashhadi
FedML
33
9
0
09 May 2023
Pushing the Accuracy-Group Robustness Frontier with Introspective Self-play
J. Liu
Krishnamurthy Dvijotham
Jihyeon Janel Lee
Quan Yuan
Martin Strobel
Balaji Lakshminarayanan
Deepak Ramachandran
21
5
0
11 Feb 2023
An Asymptotically Optimal Algorithm for the Convex Hull Membership Problem
Gang Qiao
Ambuj Tewari
17
0
0
03 Feb 2023
Fair Robust Active Learning by Joint Inconsistency
Tsung-Han Wu
Hung-Ting Su
Shang-Tse Chen
Winston H. Hsu
AAML
16
1
0
22 Sep 2022
FAL-CUR: Fair Active Learning using Uncertainty and Representativeness on Fair Clustering
R. Fajri
A. Saxena
Yulong Pei
Mykola Pechenizkiy
FaML
26
2
0
21 Sep 2022
More Data Can Lead Us Astray: Active Data Acquisition in the Presence of Label Bias
Yunyi Li
Maria De-Arteaga
M. Saar-Tsechansky
FaML
19
3
0
15 Jul 2022
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Max Hort
Zhenpeng Chen
Jie M. Zhang
Mark Harman
Federica Sarro
FaML
AI4CE
33
159
0
14 Jul 2022
Achieving Representative Data via Convex Hull Feasibility Sampling Algorithms
Laura Niss
Yuekai Sun
Ambuj Tewari
FaML
14
5
0
13 Apr 2022
Adaptive Sampling Strategies to Construct Equitable Training Datasets
William Cai
R. Encarnación
Bobbie Chern
S. Corbett-Davies
Miranda Bogen
Stevie Bergman
Sharad Goel
81
30
0
31 Jan 2022
Fair Active Learning: Solving the Labeling Problem in Insurance
Romuald Elie
Caroline Hillairet
Franccois Hu
Marc Juillard
FaML
42
0
0
17 Dec 2021
Does Data Repair Lead to Fair Models? Curating Contextually Fair Data To Reduce Model Bias
Sharat Agarwal
Sumanyu Muku
Saket Anand
Chetan Arora
14
12
0
20 Oct 2021
Auditing the Imputation Effect on Fairness of Predictive Analytics in Higher Education
Hadis Anahideh
Parian Haghighat
Nazanin Nezami
Denisa Gándara
19
0
0
13 Sep 2021
DIVINE: Diverse Influential Training Points for Data Visualization and Model Refinement
Umang Bhatt
Isabel Chien
Muhammad Bilal Zafar
Adrian Weller
TDI
11
5
0
13 Jul 2021
Can Active Learning Preemptively Mitigate Fairness Issues?
Frederic Branchaud-Charron
Parmida Atighehchian
Pau Rodríguez
Grace Abuhamad
Alexandre Lacoste
FaML
17
20
0
14 Apr 2021
Adaptive Sampling for Minimax Fair Classification
S. Shekhar
Greg Fields
Mohammad Ghavamzadeh
T. Javidi
FaML
35
36
0
01 Mar 2021
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
249
488
0
31 Dec 2020
Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty
Umang Bhatt
Javier Antorán
Yunfeng Zhang
Q. V. Liao
P. Sattigeri
...
L. Nachman
R. Chunara
Madhulika Srikumar
Adrian Weller
Alice Xiang
16
247
0
15 Nov 2020
Active Sampling for Min-Max Fairness
Jacob D. Abernethy
Pranjal Awasthi
Matthäus Kleindessner
Jamie Morgenstern
Chris Russell
Jie M. Zhang
FaML
14
48
0
11 Jun 2020
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
323
4,203
0
23 Aug 2019
Fairness Constraints: Mechanisms for Fair Classification
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez Rodriguez
Krishna P. Gummadi
FaML
114
49
0
19 Jul 2015
1