ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.00271
  4. Cited By
Options of Interest: Temporal Abstraction with Interest Functions

Options of Interest: Temporal Abstraction with Interest Functions

1 January 2020
Khimya Khetarpal
Martin Klissarov
Maxime Chevalier-Boisvert
Pierre-Luc Bacon
Doina Precup
ArXivPDFHTML

Papers citing "Options of Interest: Temporal Abstraction with Interest Functions"

15 / 15 papers shown
Title
Hierarchical Reinforcement Learning in Multi-Goal Spatial Navigation with Autonomous Mobile Robots
Hierarchical Reinforcement Learning in Multi-Goal Spatial Navigation with Autonomous Mobile Robots
Brendon Johnson
Alfredo Weitzenfeld
98
1
0
26 Apr 2025
Subgoal Discovery Using a Free Energy Paradigm and State Aggregations
Subgoal Discovery Using a Free Energy Paradigm and State Aggregations
Amirhossein Mesbah
Reshad Hosseini
Seyed Pooya Shariatpanahi
M. N. Ahmadabadi
174
0
0
21 Dec 2024
The Termination Critic
The Termination Critic
Anna Harutyunyan
Will Dabney
Diana Borsa
N. Heess
Rémi Munos
Doina Precup
OffRL
40
48
0
26 Feb 2019
Learnings Options End-to-End for Continuous Action Tasks
Learnings Options End-to-End for Continuous Action Tasks
Martin Klissarov
Pierre-Luc Bacon
J. Harb
Doina Precup
50
55
0
30 Nov 2017
When Waiting is not an Option : Learning Options with a Deliberation
  Cost
When Waiting is not an Option : Learning Options with a Deliberation Cost
J. Harb
Pierre-Luc Bacon
Martin Klissarov
Doina Precup
44
148
0
14 Sep 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
806
11,866
0
09 Mar 2017
FeUdal Networks for Hierarchical Reinforcement Learning
FeUdal Networks for Hierarchical Reinforcement Learning
A. Vezhnevets
Simon Osindero
Tom Schaul
N. Heess
Max Jaderberg
David Silver
Koray Kavukcuoglu
FedML
84
904
0
03 Mar 2017
A Laplacian Framework for Option Discovery in Reinforcement Learning
A Laplacian Framework for Option Discovery in Reinforcement Learning
Marlos C. Machado
Marc G. Bellemare
Michael Bowling
81
262
0
02 Mar 2017
The Option-Critic Architecture
The Option-Critic Architecture
Pierre-Luc Bacon
J. Harb
Doina Precup
OffRL
62
1,082
0
16 Sep 2016
Unifying task specification in reinforcement learning
Unifying task specification in reinforcement learning
Martha White
OffRL
44
90
0
07 Sep 2016
Option Discovery in Hierarchical Reinforcement Learning using
  Spatio-Temporal Clustering
Option Discovery in Hierarchical Reinforcement Learning using Spatio-Temporal Clustering
A. Srinivas
Ramnandan Krishnamurthy
Peeyush Kumar
Balaraman Ravindran
52
41
0
17 May 2016
Hierarchical Deep Reinforcement Learning: Integrating Temporal
  Abstraction and Intrinsic Motivation
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
Tejas D. Kulkarni
Karthik Narasimhan
A. Saeedi
J. Tenenbaum
68
1,134
0
20 Apr 2016
Adaptive Skills, Adaptive Partitions (ASAP)
Adaptive Skills, Adaptive Partitions (ASAP)
D. Mankowitz
Timothy A. Mann
Shie Mannor
38
58
0
10 Feb 2016
An Emphatic Approach to the Problem of Off-policy Temporal-Difference
  Learning
An Emphatic Approach to the Problem of Off-policy Temporal-Difference Learning
R. Sutton
A. R. Mahmood
Martha White
82
269
0
14 Mar 2015
Hierarchical Solution of Markov Decision Processes using Macro-actions
Hierarchical Solution of Markov Decision Processes using Macro-actions
Milos Hauskrecht
Nicolas Meuleau
L. Kaelbling
T. Dean
Craig Boutilier
86
328
0
30 Jan 2013
1