Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.12777
Cited By
v1
v2 (latest)
Machine Learning from a Continuous Viewpoint
30 December 2019
E. Weinan
Chao Ma
Lei Wu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Machine Learning from a Continuous Viewpoint"
40 / 40 papers shown
Title
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
Yindong Chen
Yiwei Wang
Lulu Kang
Chun Liu
91
2
0
21 Nov 2021
Large-time asymptotics in deep learning
Carlos Esteve
Borjan Geshkovski
Dario Pighin
Enrique Zuazua
342
34
0
06 Aug 2020
Mean-Field Neural ODEs via Relaxed Optimal Control
Jean-François Jabir
D. vSivska
Lukasz Szpruch
MLT
96
38
0
11 Dec 2019
Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks
David Pfau
J. Spencer
A. G. Matthews
W. Foulkes
84
465
0
05 Sep 2019
Neural ODEs as the Deep Limit of ResNets with constant weights
B. Avelin
K. Nystrom
ODL
122
32
0
28 Jun 2019
The Barron Space and the Flow-induced Function Spaces for Neural Network Models
E. Weinan
Chao Ma
Lei Wu
71
110
0
18 Jun 2019
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
116
164
0
11 Jun 2019
A mean-field limit for certain deep neural networks
Dyego Araújo
R. Oliveira
Daniel Yukimura
AI4CE
66
70
0
01 Jun 2019
A Comparative Analysis of the Optimization and Generalization Property of Two-layer Neural Network and Random Feature Models Under Gradient Descent Dynamics
E. Weinan
Chao Ma
Lei Wu
MLT
64
123
0
08 Apr 2019
Mean Field Analysis of Deep Neural Networks
Justin A. Sirignano
K. Spiliopoulos
84
82
0
11 Mar 2019
A Priori Estimates of the Population Risk for Residual Networks
E. Weinan
Chao Ma
Qingcan Wang
UQCV
74
61
0
06 Mar 2019
Mean Field Limit of the Learning Dynamics of Multilayer Neural Networks
Phan-Minh Nguyen
AI4CE
60
72
0
07 Feb 2019
Global convergence of neuron birth-death dynamics
Grant M. Rotskoff
Samy Jelassi
Joan Bruna
Eric Vanden-Eijnden
49
46
0
05 Feb 2019
Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks
Zhi-Qin John Xu
Yaoyu Zhang
Yaoyu Zhang
Yan Xiao
Zheng Ma
124
520
0
19 Jan 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
244
1,659
0
28 Dec 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.8K
95,229
0
11 Oct 2018
Mean Field Analysis of Neural Networks: A Central Limit Theorem
Justin A. Sirignano
K. Spiliopoulos
MLT
77
194
0
28 Aug 2018
Learning with SGD and Random Features
Luigi Carratino
Alessandro Rudi
Lorenzo Rosasco
53
78
0
17 Jul 2018
A Mean-Field Optimal Control Formulation of Deep Learning
Weinan E
Jiequn Han
Qianxiao Li
OOD
108
187
0
03 Jul 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
443
5,168
0
19 Jun 2018
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
Lénaïc Chizat
Francis R. Bach
OT
214
737
0
24 May 2018
A Mean Field View of the Landscape of Two-Layers Neural Networks
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
105
862
0
18 Apr 2018
Representing smooth functions as compositions of near-identity functions with implications for deep network optimization
Peter L. Bartlett
S. Evans
Philip M. Long
93
32
0
13 Apr 2018
Solving for high dimensional committor functions using artificial neural networks
Y. Khoo
Jianfeng Lu
Lexing Ying
67
137
0
28 Feb 2018
Which Neural Net Architectures Give Rise To Exploding and Vanishing Gradients?
Boris Hanin
72
254
0
11 Jan 2018
Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equations
Yiping Lu
Aoxiao Zhong
Quanzheng Li
Bin Dong
210
505
0
27 Oct 2017
Maximum Principle Based Algorithms for Deep Learning
Qianxiao Li
Long Chen
Cheng Tai
E. Weinan
103
224
0
26 Oct 2017
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
123
1,390
0
30 Sep 2017
DGM: A deep learning algorithm for solving partial differential equations
Justin A. Sirignano
K. Spiliopoulos
AI4CE
93
2,067
0
24 Aug 2017
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
Weinan E
Jiequn Han
Arnulf Jentzen
125
797
0
15 Jun 2017
Stable Architectures for Deep Neural Networks
E. Haber
Lars Ruthotto
152
733
0
09 May 2017
Deep Learning Approximation for Stochastic Control Problems
Jiequn Han
E. Weinan
BDL
61
197
0
02 Nov 2016
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
174
5,042
0
27 Jun 2016
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
354
10,196
0
16 Mar 2016
Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression
Aymeric Dieuleveut
Nicolas Flammarion
Francis R. Bach
ODL
59
227
0
17 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,510
0
10 Dec 2015
Neural Network with Unbounded Activation Functions is Universal Approximator
Sho Sonoda
Noboru Murata
70
336
0
14 May 2015
Breaking the Curse of Dimensionality with Convex Neural Networks
Francis R. Bach
184
706
0
30 Dec 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
Convex Sparse Matrix Factorizations
Francis R. Bach
Julien Mairal
Jean Ponce
201
143
0
10 Dec 2008
1