Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.10557
Cited By
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
22 December 2019
V. Monga
Yuelong Li
Yonina C. Eldar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing"
50 / 334 papers shown
Title
Convergence and Recovery Guarantees of Unsupervised Neural Networks for Inverse Problems
Nathan Buskulic
M. Fadili
Yvain Quéau
22
4
0
21 Sep 2023
Limited Communications Distributed Optimization via Deep Unfolded Distributed ADMM
Yoav Noah
Nir Shlezinger
33
4
0
21 Sep 2023
CalibFPA: A Focal Plane Array Imaging System based on Online Deep-Learning Calibration
Alper Gungor
M. U. Bahçeci
Yasin Ergen
Ahmet Sozak
O. O. Ekiz
Tolga Yelboğa
Tolga cCukur
24
0
0
20 Sep 2023
Deep Networks as Denoising Algorithms: Sample-Efficient Learning of Diffusion Models in High-Dimensional Graphical Models
Song Mei
Yuchen Wu
DiffM
31
26
0
20 Sep 2023
Uncertainty quantification for learned ISTA
Frederik Hoppe
C. M. Verdun
Felix Krahmer
Hannah Laus
Holger Rauhut
UQCV
31
3
0
14 Sep 2023
Learning to Warm-Start Fixed-Point Optimization Algorithms
Rajiv Sambharya
Georgina Hall
Brandon Amos
Bartolomeo Stellato
36
12
0
14 Sep 2023
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
40
1
0
13 Sep 2023
Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth Soft-Thresholding
Shaik Basheeruddin Shah
Pradyumna Pradhan
Wei Pu
Ramunaidu Randhi
Miguel R. D. Rodrigues
Yonina C. Eldar
22
4
0
12 Sep 2023
Emergence of Segmentation with Minimalistic White-Box Transformers
Yaodong Yu
Tianzhe Chu
Shengbang Tong
Ziyang Wu
Druv Pai
Sam Buchanan
Y. Ma
ViT
22
22
0
30 Aug 2023
Reinforcement Learning for Sampling on Temporal Medical Imaging Sequences
Zhishen Huang
31
1
0
28 Aug 2023
Self-Supervised Scalable Deep Compressed Sensing
Bin Chen
Xuanyu Zhang
Shuai Liu
Yongbing Zhang
Jian Zhang
22
5
0
26 Aug 2023
Consistent Signal Reconstruction from Streaming Multivariate Time Series
Emilio Ruiz-Moreno
Luis Miguel Lopez Ramos
B. Beferull-Lozano
16
0
0
23 Aug 2023
Iterative Reweighted Least Squares Networks With Convergence Guarantees for Solving Inverse Imaging Problems
Iaroslav Koshelev
Stamatios Lefkimmiatis
39
1
0
10 Aug 2023
Deep Learning Meets Adaptive Filtering: A Stein's Unbiased Risk Estimator Approach
Zahra Esmaeilbeig
M. Soltanalian
20
3
0
31 Jul 2023
Deep Unrolling Networks with Recurrent Momentum Acceleration for Nonlinear Inverse Problems
Qingping Zhou
Jiayu Qian
Junqi Tang
Jinglai Li
AI4CE
27
4
0
30 Jul 2023
Decision-Focused Learning: Foundations, State of the Art, Benchmark and Future Opportunities
Jayanta Mandi
James Kotary
Senne Berden
Maxime Mulamba
Víctor Bucarey
Tias Guns
Ferdinando Fioretto
AI4CE
28
55
0
25 Jul 2023
A signal processing interpretation of noise-reduction convolutional neural networks
Luis A. Zavala-Mondragón
Peter H. N. de With
Fons van der Sommen
25
0
0
25 Jul 2023
Deep unrolling Shrinkage Network for Dynamic MR imaging
Yinghao Zhang
Xiaodi Li
Weihang Li
Yue Hu
32
4
0
19 Jul 2023
Sampling-Priors-Augmented Deep Unfolding Network for Robust Video Compressive Sensing
Yuhao Huang
Gangrong Qu
Youran Ge
22
0
0
14 Jul 2023
Deep Unrolling for Nonconvex Robust Principal Component Analysis
E. C. Tan
C. Chaux
Emmanuel Soubies
Vincent Y. F. Tan
42
3
0
12 Jul 2023
Spatially Varying Exposure with 2-by-2 Multiplexing: Optimality and Universality
Xiangyu Qu
Yiheng Chi
Stanley H. Chan
22
6
0
30 Jun 2023
Improving Federated Aggregation with Deep Unfolding Networks
S. Nanayakkara
Shiva Raj Pokhrel
Gang Li
FedML
31
0
0
30 Jun 2023
Attention-Refined Unrolling for Sparse Sequential micro-Doppler Reconstruction
Riccardo Mazzieri
Jacopo Pegoraro
Michele Rossi
7
1
0
25 Jun 2023
Accelerating Multiframe Blind Deconvolution via Deep Learning
A. Ramos
S. E. Pozuelo
C. Kuckein
13
2
0
21 Jun 2023
Unsupervised Deep Unfolded PGD for Transmit Power Allocation in Wireless Systems
Ramoni O. Adeogun
14
1
0
20 Jun 2023
A Survey of Contextual Optimization Methods for Decision Making under Uncertainty
Utsav Sadana
A. Chenreddy
Erick Delage
Alexandre Forel
Emma Frejinger
Thibaut Vidal
AI4CE
45
83
0
17 Jun 2023
An Optimization-based Deep Equilibrium Model for Hyperspectral Image Deconvolution with Convergence Guarantees
A. Gkillas
D. Ampeliotis
K. Berberidis
33
0
0
10 Jun 2023
Learned Alternating Minimization Algorithm for Dual-domain Sparse-View CT Reconstruction
Chi-Jiao Ding
Qingchao Zhang
Ge Wang
X. Ye
Yunmei Chen
17
7
0
05 Jun 2023
Towards Constituting Mathematical Structures for Learning to Optimize
Jialin Liu
Xiaohan Chen
Zhangyang Wang
W. Yin
HanQin Cai
34
12
0
29 May 2023
Stochastic Unrolled Federated Learning
Samar Hadou
Navid Naderializadeh
Alejandro Ribeiro
FedML
30
5
0
24 May 2023
Deep-Learning-Aided Alternating Least Squares for Tensor CP Decomposition and Its Application to Massive MIMO Channel Estimation
Xiao Gong
Wei Chen
Bo Ai
G. Leus
11
1
0
23 May 2023
Block Coordinate Plug-and-Play Methods for Blind Inverse Problems
Weijie Gan
Shirin Shoushtari
Yuyang Hu
Jiaming Liu
Hongyu An
Ulugbek S. Kamilov
23
11
0
22 May 2023
A Compound Gaussian Least Squares Algorithm and Unrolled Network for Linear Inverse Problems
Carter Lyons
R. Raj
Margaret Cheney
16
7
0
18 May 2023
Deep-Unfolding for Next-Generation Transceivers
Qiyu Hu
Yunlong Cai
Guangyi Zhang
Guanding Yu
Geoffrey Ye Li
25
4
0
15 May 2023
Solving Linear Inverse Problems using Higher-Order Annealed Langevin Diffusion
Nicolas Zilberstein
A. Sabharwal
Santiago Segarra
DiffM
39
8
0
08 May 2023
Physics-based network fine-tuning for robust quantitative susceptibility mapping from high-pass filtered phase
Jinwei Zhang
A. Dimov
Chao Li
Hang Zhang
Thanh D. Nguyen
P. Spincemaille
Yi Wang
27
0
0
05 May 2023
Interpretability of Machine Learning: Recent Advances and Future Prospects
Lei Gao
L. Guan
AAML
43
31
0
30 Apr 2023
Learning Sparse and Low-Rank Priors for Image Recovery via Iterative Reweighted Least Squares Minimization
Stamatios Lefkimmiatis
Iaroslav Koshelev
20
8
0
20 Apr 2023
Generalization and Estimation Error Bounds for Model-based Neural Networks
Avner Shultzman
Eyar Azar
M. Rodrigues
Yonina C. Eldar
18
7
0
19 Apr 2023
NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging Inverse Problems
Ziruo Cai
Junqi Tang
Subhadip Mukherjee
Jinglai Li
Carola Bibiane Schönlieb
Xiaoqun Zhang
AI4CE
33
3
0
17 Apr 2023
Model-corrected learned primal-dual models for fast limited-view photoacoustic tomography
A. Hauptmann
Jenni Poimala
MedIm
33
5
0
04 Apr 2023
Deep Graph Unfolding for Beamforming in MU-MIMO Interference Networks
Arindam Chowdhury
Gunjan Verma
A. Swami
Santiago Segarra
28
13
0
02 Apr 2023
SC-VAE: Sparse Coding-based Variational Autoencoder with Learned ISTA
Pan Xiao
Peijie Qiu
Sungmin Ha
Abdalla Bani
Shuang Zhou
Aristeidis Sotiras
DRL
25
4
0
29 Mar 2023
Convergence Guarantees of Overparametrized Wide Deep Inverse Prior
Nathan Buskulic
Yvain Quéau
M. Fadili
BDL
16
2
0
20 Mar 2023
Learning to Reconstruct Signals From Binary Measurements
Julián Tachella
Laurent Jacques
SSL
13
2
0
15 Mar 2023
Generalization analysis of an unfolding network for analysis-based Compressed Sensing
Vicky Kouni
Yannis Panagakis
MLT
26
0
0
09 Mar 2023
Sparse, Geometric Autoencoder Models of V1
Jonathan Huml
Abiy Tasissa
Demba E. Ba
16
0
0
22 Feb 2023
Message Passing Meets Graph Neural Networks: A New Paradigm for Massive MIMO Systems
Hengtao He
Xianghao Yu
Jun Zhang
Shenghui Song
Khaled B. Letaief
37
16
0
14 Feb 2023
Hierarchical Optimization-Derived Learning
Risheng Liu
Xuan Liu
Shangzhi Zeng
Jin Zhang
Yixuan Zhang
28
3
0
11 Feb 2023
CQnet: convex-geometric interpretation and constraining neural-network trajectories
Bas Peters
32
0
0
09 Feb 2023
Previous
1
2
3
4
5
6
7
Next