ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.10481
  4. Cited By
A Systematic Comparison of Bayesian Deep Learning Robustness in Diabetic
  Retinopathy Tasks

A Systematic Comparison of Bayesian Deep Learning Robustness in Diabetic Retinopathy Tasks

22 December 2019
Angelos Filos
Sebastian Farquhar
Aidan Gomez
Tim G. J. Rudner
Zachary Kenton
Lewis Smith
Milad Alizadeh
A. D. Kroon
Y. Gal
    BDL
    AAML
    OOD
    UQCV
ArXivPDFHTML

Papers citing "A Systematic Comparison of Bayesian Deep Learning Robustness in Diabetic Retinopathy Tasks"

26 / 26 papers shown
Title
Navigating Conflicting Views: Harnessing Trust for Learning
Navigating Conflicting Views: Harnessing Trust for Learning
Jueqing Lu
Lan Du
Wray Buntine
M. Jung
Joanna Dipnall
Belinda Gabbe
54
0
0
03 Jun 2024
Law of Large Numbers for Bayesian two-layer Neural Network trained with
  Variational Inference
Law of Large Numbers for Bayesian two-layer Neural Network trained with Variational Inference
Arnaud Descours
Tom Huix
Arnaud Guillin
Manon Michel
Eric Moulines
Boris Nectoux
BDL
32
1
0
10 Jul 2023
Quantification of Uncertainty with Adversarial Models
Quantification of Uncertainty with Adversarial Models
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
Günter Klambauer
Sepp Hochreiter
UQCV
42
14
0
06 Jul 2023
Masked Bayesian Neural Networks : Theoretical Guarantee and its
  Posterior Inference
Masked Bayesian Neural Networks : Theoretical Guarantee and its Posterior Inference
Insung Kong
Dongyoon Yang
Jongjin Lee
Ilsang Ohn
Gyuseung Baek
Yongdai Kim
BDL
36
4
0
24 May 2023
Disentangled Uncertainty and Out of Distribution Detection in Medical
  Generative Models
Disentangled Uncertainty and Out of Distribution Detection in Medical Generative Models
Kumud Lakara
Matias Valdenegro-Toro
UQCV
OOD
33
1
0
11 Nov 2022
Trustworthy clinical AI solutions: a unified review of uncertainty
  quantification in deep learning models for medical image analysis
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
34
81
0
05 Oct 2022
Success of Uncertainty-Aware Deep Models Depends on Data Manifold
  Geometry
Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry
M. Penrod
Harrison Termotto
Varshini Reddy
Jiayu Yao
Finale Doshi-Velez
Weiwei Pan
AAML
OOD
43
1
0
02 Aug 2022
PCCT: Progressive Class-Center Triplet Loss for Imbalanced Medical Image
  Classification
PCCT: Progressive Class-Center Triplet Loss for Imbalanced Medical Image Classification
Kanghao Chen
Weixian Lei
Rong Zhang
Shen Zhao
Weishi Zheng
Ruixuan Wang
OOD
19
20
0
11 Jul 2022
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
A. Malinin
A. Athanasopoulos
M. Barakovic
Meritxell Bach Cuadra
Mark Gales
...
Francesco La Rosa
Eli Sivena
V. Tsarsitalidis
Efi Tsompopoulou
E. Volf
OOD
30
28
0
30 Jun 2022
Deep Classifiers with Label Noise Modeling and Distance Awareness
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
36
11
0
06 Oct 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
66
1,112
0
07 Jul 2021
On the Robustness of Pretraining and Self-Supervision for a Deep
  Learning-based Analysis of Diabetic Retinopathy
On the Robustness of Pretraining and Self-Supervision for a Deep Learning-based Analysis of Diabetic Retinopathy
Vignesh Srinivasan
Nils Strodthoff
Jackie Ma
Alexander Binder
Klaus-Robert Muller
Wojciech Samek
OOD
20
6
0
25 Jun 2021
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep
  Learning
Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning
Zachary Nado
Neil Band
Mark Collier
Josip Djolonga
Michael W. Dusenberry
...
D. Sculley
Balaji Lakshminarayanan
Jasper Snoek
Y. Gal
Dustin Tran
UQCV
ELM
38
96
0
07 Jun 2021
Should We Trust This Summary? Bayesian Abstractive Summarization to The
  Rescue
Should We Trust This Summary? Bayesian Abstractive Summarization to The Rescue
Alexios Gidiotis
Grigorios Tsoumakas
UQCV
UD
BDL
22
9
0
21 May 2021
What Are Bayesian Neural Network Posteriors Really Like?
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
28
374
0
29 Apr 2021
Deep Deterministic Uncertainty: A Simple Baseline
Deep Deterministic Uncertainty: A Simple Baseline
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip Torr
Y. Gal
UD
UQCV
PER
BDL
32
146
0
23 Feb 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
104
186
0
12 Jan 2021
An Active Learning Method for Diabetic Retinopathy Classification with
  Uncertainty Quantification
An Active Learning Method for Diabetic Retinopathy Classification with Uncertainty Quantification
Muhammad Ahtazaz Ahsan
A. Qayyum
Junaid Qadir
Adeel Razi
BDL
23
19
0
24 Dec 2020
A Review and Comparative Study on Probabilistic Object Detection in
  Autonomous Driving
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAML
UQCV
EDL
24
224
0
20 Nov 2020
Training independent subnetworks for robust prediction
Training independent subnetworks for robust prediction
Marton Havasi
Rodolphe Jenatton
Stanislav Fort
Jeremiah Zhe Liu
Jasper Snoek
Balaji Lakshminarayanan
Andrew M. Dai
Dustin Tran
UQCV
OOD
41
208
0
13 Oct 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
46
100
0
15 Jun 2020
Detecting unusual input to neural networks
Detecting unusual input to neural networks
Jörg Martin
Clemens Elster
AAML
17
7
0
15 Jun 2020
Uncertainty Estimation Using a Single Deep Deterministic Neural Network
Uncertainty Estimation Using a Single Deep Deterministic Neural Network
Joost R. van Amersfoort
Lewis Smith
Yee Whye Teh
Y. Gal
UQCV
BDL
14
55
0
04 Mar 2020
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
304
7,005
0
20 Apr 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,695
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1