Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.09132
Cited By
v1
v2
v3 (latest)
Mean field theory for deep dropout networks: digging up gradient backpropagation deeply
19 December 2019
Wei Huang
R. Xu
Weitao Du
Yutian Zeng
Yunce Zhao
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Mean field theory for deep dropout networks: digging up gradient backpropagation deeply"
18 / 18 papers shown
Title
A Mean Field Theory of Batch Normalization
Greg Yang
Jeffrey Pennington
Vinay Rao
Jascha Narain Sohl-Dickstein
S. Schoenholz
72
180
0
21 Feb 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
211
1,108
0
18 Feb 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
169
289
0
13 Feb 2019
Dynamical Isometry and a Mean Field Theory of LSTMs and GRUs
D. Gilboa
B. Chang
Minmin Chen
Greg Yang
S. Schoenholz
Ed H. Chi
Jeffrey Pennington
84
42
0
25 Jan 2019
Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables Signal Propagation in Recurrent Neural Networks
Minmin Chen
Jeffrey Pennington
S. Schoenholz
SyDa
AI4CE
57
117
0
14 Jun 2018
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
304
354
0
14 Jun 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
155
561
0
30 Apr 2018
The Emergence of Spectral Universality in Deep Networks
Jeffrey Pennington
S. Schoenholz
Surya Ganguli
64
173
0
27 Feb 2018
Mean Field Residual Networks: On the Edge of Chaos
Greg Yang
S. Schoenholz
71
194
0
24 Dec 2017
Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice
Jeffrey Pennington
S. Schoenholz
Surya Ganguli
ODL
43
254
0
13 Nov 2017
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
135
1,099
0
01 Nov 2017
Deep Information Propagation
S. Schoenholz
Justin Gilmer
Surya Ganguli
Jascha Narain Sohl-Dickstein
82
371
0
04 Nov 2016
Exponential expressivity in deep neural networks through transient chaos
Ben Poole
Subhaneil Lahiri
M. Raghu
Jascha Narain Sohl-Dickstein
Surya Ganguli
90
595
0
16 Jun 2016
Toward Deeper Understanding of Neural Networks: The Power of Initialization and a Dual View on Expressivity
Amit Daniely
Roy Frostig
Y. Singer
168
345
0
18 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
852
9,346
0
06 Jun 2015
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
465
43,341
0
11 Feb 2015
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
Junyoung Chung
Çağlar Gülçehre
Kyunghyun Cho
Yoshua Bengio
601
12,741
0
11 Dec 2014
1