Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.09132
Cited By
Mean field theory for deep dropout networks: digging up gradient backpropagation deeply
19 December 2019
Wei Huang
R. Xu
Weitao Du
Yutian Zeng
Yunce Zhao
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Mean field theory for deep dropout networks: digging up gradient backpropagation deeply"
4 / 4 papers shown
Title
On the Initialisation of Wide Low-Rank Feedforward Neural Networks
Thiziri Nait Saada
Jared Tanner
13
1
0
31 Jan 2023
Component-Wise Natural Gradient Descent -- An Efficient Neural Network Optimization
Tran van Sang
Mhd Irvan
R. Yamaguchi
Toshiyuki Nakata
15
1
0
11 Oct 2022
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
227
348
0
14 Jun 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1