ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.08957
  4. Cited By
Optimization for deep learning: theory and algorithms

Optimization for deep learning: theory and algorithms

19 December 2019
Ruoyu Sun
    ODL
ArXivPDFHTML

Papers citing "Optimization for deep learning: theory and algorithms"

35 / 85 papers shown
Title
MARINA: Faster Non-Convex Distributed Learning with Compression
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
39
109
0
15 Feb 2021
Learning by Turning: Neural Architecture Aware Optimisation
Learning by Turning: Neural Architecture Aware Optimisation
Yang Liu
Jeremy Bernstein
M. Meister
Yisong Yue
ODL
43
26
0
14 Feb 2021
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse
  in Imbalanced Training
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training
Cong Fang
Hangfeng He
Qi Long
Weijie J. Su
FAtt
130
167
0
29 Jan 2021
Reinforcement Learning for Selective Key Applications in Power Systems:
  Recent Advances and Future Challenges
Reinforcement Learning for Selective Key Applications in Power Systems: Recent Advances and Future Challenges
Xin Chen
Guannan Qu
Yujie Tang
S. Low
Na Li
24
227
0
27 Jan 2021
Stable Recovery of Entangled Weights: Towards Robust Identification of
  Deep Neural Networks from Minimal Samples
Stable Recovery of Entangled Weights: Towards Robust Identification of Deep Neural Networks from Minimal Samples
Christian Fiedler
M. Fornasier
T. Klock
Michael Rauchensteiner
OOD
22
12
0
18 Jan 2021
First-Order Methods for Convex Optimization
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
31
25
0
04 Jan 2021
Recent advances in deep learning theory
Recent advances in deep learning theory
Fengxiang He
Dacheng Tao
AI4CE
24
50
0
20 Dec 2020
Recent Theoretical Advances in Non-Convex Optimization
Recent Theoretical Advances in Non-Convex Optimization
Marina Danilova
Pavel Dvurechensky
Alexander Gasnikov
Eduard A. Gorbunov
Sergey Guminov
Dmitry Kamzolov
Innokentiy Shibaev
33
76
0
11 Dec 2020
On the linearity of large non-linear models: when and why the tangent
  kernel is constant
On the linearity of large non-linear models: when and why the tangent kernel is constant
Chaoyue Liu
Libin Zhu
M. Belkin
21
140
0
02 Oct 2020
Escaping Saddle-Points Faster under Interpolation-like Conditions
Escaping Saddle-Points Faster under Interpolation-like Conditions
Abhishek Roy
Krishnakumar Balasubramanian
Saeed Ghadimi
P. Mohapatra
14
1
0
28 Sep 2020
Normalization Techniques in Training DNNs: Methodology, Analysis and
  Application
Normalization Techniques in Training DNNs: Methodology, Analysis and Application
Lei Huang
Jie Qin
Yi Zhou
Fan Zhu
Li Liu
Ling Shao
AI4CE
12
254
0
27 Sep 2020
Adaptive Hierarchical Hyper-gradient Descent
Adaptive Hierarchical Hyper-gradient Descent
Renlong Jie
Junbin Gao
A. Vasnev
Minh-Ngoc Tran
21
5
0
17 Aug 2020
Deep Learning in Protein Structural Modeling and Design
Deep Learning in Protein Structural Modeling and Design
Wenhao Gao
S. Mahajan
Jeremias Sulam
Jeffrey J. Gray
29
159
0
16 Jul 2020
From Symmetry to Geometry: Tractable Nonconvex Problems
From Symmetry to Geometry: Tractable Nonconvex Problems
Yuqian Zhang
Qing Qu
John N. Wright
26
43
0
14 Jul 2020
AdaScale SGD: A User-Friendly Algorithm for Distributed Training
AdaScale SGD: A User-Friendly Algorithm for Distributed Training
Tyler B. Johnson
Pulkit Agrawal
Haijie Gu
Carlos Guestrin
ODL
24
37
0
09 Jul 2020
Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK
Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK
Yuanzhi Li
Tengyu Ma
Hongyang R. Zhang
MLT
20
28
0
09 Jul 2020
Global Convergence and Generalization Bound of Gradient-Based
  Meta-Learning with Deep Neural Nets
Global Convergence and Generalization Bound of Gradient-Based Meta-Learning with Deep Neural Nets
Haoxiang Wang
Ruoyu Sun
Bo Li
MLT
AI4CE
27
14
0
25 Jun 2020
Autonomous Driving with Deep Learning: A Survey of State-of-Art
  Technologies
Autonomous Driving with Deep Learning: A Survey of State-of-Art Technologies
Yu Huang
Yue Chen
3DPC
49
83
0
10 Jun 2020
Random Reshuffling: Simple Analysis with Vast Improvements
Random Reshuffling: Simple Analysis with Vast Improvements
Konstantin Mishchenko
Ahmed Khaled
Peter Richtárik
37
131
0
10 Jun 2020
Reinforcement Learning for Caching with Space-Time Popularity Dynamics
Reinforcement Learning for Caching with Space-Time Popularity Dynamics
A. Sadeghi
G. Giannakis
Gang Wang
Fatemeh Sheikholeslami
18
1
0
19 May 2020
The Impact of the Mini-batch Size on the Variance of Gradients in
  Stochastic Gradient Descent
The Impact of the Mini-batch Size on the Variance of Gradients in Stochastic Gradient Descent
Xin-Yao Qian
Diego Klabjan
ODL
13
35
0
27 Apr 2020
On Learning Rates and Schrödinger Operators
On Learning Rates and Schrödinger Operators
Bin Shi
Weijie J. Su
Michael I. Jordan
6
59
0
15 Apr 2020
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep
  Network Losses
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses
Charles G. Frye
James B. Simon
Neha S. Wadia
A. Ligeralde
M. DeWeese
K. Bouchard
ODL
16
2
0
23 Mar 2020
Introduction to deep learning
Introduction to deep learning
Lihi Shiloh-Perl
Raja Giryes
27
0
0
29 Feb 2020
LaProp: Separating Momentum and Adaptivity in Adam
LaProp: Separating Momentum and Adaptivity in Adam
Liu Ziyin
Zhikang T.Wang
Masahito Ueda
ODL
8
18
0
12 Feb 2020
On the distance between two neural networks and the stability of
  learning
On the distance between two neural networks and the stability of learning
Jeremy Bernstein
Arash Vahdat
Yisong Yue
Xuan Li
ODL
200
57
0
09 Feb 2020
Better Theory for SGD in the Nonconvex World
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
13
178
0
09 Feb 2020
Generalization Bounds for High-dimensional M-estimation under Sparsity
  Constraint
Generalization Bounds for High-dimensional M-estimation under Sparsity Constraint
Xiao-Tong Yuan
Ping Li
11
2
0
20 Jan 2020
Memory capacity of neural networks with threshold and ReLU activations
Memory capacity of neural networks with threshold and ReLU activations
Roman Vershynin
31
21
0
20 Jan 2020
The Practicality of Stochastic Optimization in Imaging Inverse Problems
The Practicality of Stochastic Optimization in Imaging Inverse Problems
Junqi Tang
K. Egiazarian
Mohammad Golbabaee
Mike Davies
27
30
0
22 Oct 2019
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
238
348
0
14 Jun 2018
Global optimality conditions for deep neural networks
Global optimality conditions for deep neural networks
Chulhee Yun
S. Sra
Ali Jadbabaie
128
117
0
08 Jul 2017
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
271
5,327
0
05 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,890
0
15 Sep 2016
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
Previous
12