Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.08957
Cited By
Optimization for deep learning: theory and algorithms
19 December 2019
Ruoyu Sun
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization for deep learning: theory and algorithms"
35 / 85 papers shown
Title
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
39
109
0
15 Feb 2021
Learning by Turning: Neural Architecture Aware Optimisation
Yang Liu
Jeremy Bernstein
M. Meister
Yisong Yue
ODL
43
26
0
14 Feb 2021
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training
Cong Fang
Hangfeng He
Qi Long
Weijie J. Su
FAtt
130
167
0
29 Jan 2021
Reinforcement Learning for Selective Key Applications in Power Systems: Recent Advances and Future Challenges
Xin Chen
Guannan Qu
Yujie Tang
S. Low
Na Li
24
227
0
27 Jan 2021
Stable Recovery of Entangled Weights: Towards Robust Identification of Deep Neural Networks from Minimal Samples
Christian Fiedler
M. Fornasier
T. Klock
Michael Rauchensteiner
OOD
22
12
0
18 Jan 2021
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
31
25
0
04 Jan 2021
Recent advances in deep learning theory
Fengxiang He
Dacheng Tao
AI4CE
24
50
0
20 Dec 2020
Recent Theoretical Advances in Non-Convex Optimization
Marina Danilova
Pavel Dvurechensky
Alexander Gasnikov
Eduard A. Gorbunov
Sergey Guminov
Dmitry Kamzolov
Innokentiy Shibaev
33
76
0
11 Dec 2020
On the linearity of large non-linear models: when and why the tangent kernel is constant
Chaoyue Liu
Libin Zhu
M. Belkin
21
140
0
02 Oct 2020
Escaping Saddle-Points Faster under Interpolation-like Conditions
Abhishek Roy
Krishnakumar Balasubramanian
Saeed Ghadimi
P. Mohapatra
14
1
0
28 Sep 2020
Normalization Techniques in Training DNNs: Methodology, Analysis and Application
Lei Huang
Jie Qin
Yi Zhou
Fan Zhu
Li Liu
Ling Shao
AI4CE
12
254
0
27 Sep 2020
Adaptive Hierarchical Hyper-gradient Descent
Renlong Jie
Junbin Gao
A. Vasnev
Minh-Ngoc Tran
21
5
0
17 Aug 2020
Deep Learning in Protein Structural Modeling and Design
Wenhao Gao
S. Mahajan
Jeremias Sulam
Jeffrey J. Gray
29
159
0
16 Jul 2020
From Symmetry to Geometry: Tractable Nonconvex Problems
Yuqian Zhang
Qing Qu
John N. Wright
26
43
0
14 Jul 2020
AdaScale SGD: A User-Friendly Algorithm for Distributed Training
Tyler B. Johnson
Pulkit Agrawal
Haijie Gu
Carlos Guestrin
ODL
24
37
0
09 Jul 2020
Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK
Yuanzhi Li
Tengyu Ma
Hongyang R. Zhang
MLT
20
28
0
09 Jul 2020
Global Convergence and Generalization Bound of Gradient-Based Meta-Learning with Deep Neural Nets
Haoxiang Wang
Ruoyu Sun
Bo Li
MLT
AI4CE
27
14
0
25 Jun 2020
Autonomous Driving with Deep Learning: A Survey of State-of-Art Technologies
Yu Huang
Yue Chen
3DPC
49
83
0
10 Jun 2020
Random Reshuffling: Simple Analysis with Vast Improvements
Konstantin Mishchenko
Ahmed Khaled
Peter Richtárik
37
131
0
10 Jun 2020
Reinforcement Learning for Caching with Space-Time Popularity Dynamics
A. Sadeghi
G. Giannakis
Gang Wang
Fatemeh Sheikholeslami
18
1
0
19 May 2020
The Impact of the Mini-batch Size on the Variance of Gradients in Stochastic Gradient Descent
Xin-Yao Qian
Diego Klabjan
ODL
13
35
0
27 Apr 2020
On Learning Rates and Schrödinger Operators
Bin Shi
Weijie J. Su
Michael I. Jordan
6
59
0
15 Apr 2020
Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses
Charles G. Frye
James B. Simon
Neha S. Wadia
A. Ligeralde
M. DeWeese
K. Bouchard
ODL
16
2
0
23 Mar 2020
Introduction to deep learning
Lihi Shiloh-Perl
Raja Giryes
27
0
0
29 Feb 2020
LaProp: Separating Momentum and Adaptivity in Adam
Liu Ziyin
Zhikang T.Wang
Masahito Ueda
ODL
8
18
0
12 Feb 2020
On the distance between two neural networks and the stability of learning
Jeremy Bernstein
Arash Vahdat
Yisong Yue
Xuan Li
ODL
200
57
0
09 Feb 2020
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
13
178
0
09 Feb 2020
Generalization Bounds for High-dimensional M-estimation under Sparsity Constraint
Xiao-Tong Yuan
Ping Li
11
2
0
20 Jan 2020
Memory capacity of neural networks with threshold and ReLU activations
Roman Vershynin
31
21
0
20 Jan 2020
The Practicality of Stochastic Optimization in Imaging Inverse Problems
Junqi Tang
K. Egiazarian
Mohammad Golbabaee
Mike Davies
27
30
0
22 Oct 2019
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
238
348
0
14 Jun 2018
Global optimality conditions for deep neural networks
Chulhee Yun
S. Sra
Ali Jadbabaie
128
117
0
08 Jul 2017
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
271
5,327
0
05 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
308
2,890
0
15 Sep 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
Previous
1
2