ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.07458
  4. Cited By
On-manifold Adversarial Data Augmentation Improves Uncertainty
  Calibration

On-manifold Adversarial Data Augmentation Improves Uncertainty Calibration

16 December 2019
Kanil Patel
William H. Beluch
Dan Zhang
Michael Pfeiffer
Bin Yang
    UQCV
ArXivPDFHTML

Papers citing "On-manifold Adversarial Data Augmentation Improves Uncertainty Calibration"

22 / 22 papers shown
Title
A Structured Review of Literature on Uncertainty in Machine Learning &
  Deep Learning
A Structured Review of Literature on Uncertainty in Machine Learning & Deep Learning
Fahimeh Fakour
Ali Mosleh
Ramin Ramezani
UQCV
UD
PER
43
1
0
01 Jun 2024
Mask-TS Net: Mask Temperature Scaling Uncertainty Calibration for Polyp
  Segmentation
Mask-TS Net: Mask Temperature Scaling Uncertainty Calibration for Polyp Segmentation
Yudian Zhang
Chenhao Xu
Kaiye Xu
Haijiang Zhu
46
0
0
09 May 2024
Calibration Attacks: A Comprehensive Study of Adversarial Attacks on
  Model Confidence
Calibration Attacks: A Comprehensive Study of Adversarial Attacks on Model Confidence
Stephen Obadinma
Xiaodan Zhu
Hongyu Guo
AAML
14
1
0
05 Jan 2024
Data-Centric Digital Agriculture: A Perspective
Data-Centric Digital Agriculture: A Perspective
R. Roscher
Lukas Roth
C. Stachniss
Achim Walter
15
2
0
06 Dec 2023
OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
  Evasion Attacks
OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable Evasion Attacks
Ofir Bar Tal
Adi Haviv
Amit H. Bermano
AAML
18
0
0
05 Oct 2023
Why Does Little Robustness Help? Understanding and Improving Adversarial
  Transferability from Surrogate Training
Why Does Little Robustness Help? Understanding and Improving Adversarial Transferability from Surrogate Training
Yechao Zhang
Shengshan Hu
Leo Yu Zhang
Junyu Shi
Minghui Li
Xiaogeng Liu
Wei Wan
Hai Jin
AAML
22
21
0
15 Jul 2023
A Review of Uncertainty Estimation and its Application in Medical
  Imaging
A Review of Uncertainty Estimation and its Application in Medical Imaging
K. Zou
Zhihao Chen
Xuedong Yuan
Xiaojing Shen
Meng Wang
Huazhu Fu
UQCV
49
86
0
16 Feb 2023
Generalized Uncertainty of Deep Neural Networks: Taxonomy and
  Applications
Generalized Uncertainty of Deep Neural Networks: Taxonomy and Applications
Chengyu Dong
OOD
UQCV
BDL
AI4CE
39
0
0
02 Feb 2023
Adversarial Purification with the Manifold Hypothesis
Adversarial Purification with the Manifold Hypothesis
Zhaoyuan Yang
Zhiwei Xu
Jing Zhang
Richard I. Hartley
Peter Tu
AAML
24
5
0
26 Oct 2022
Understanding Adversarial Robustness Against On-manifold Adversarial
  Examples
Understanding Adversarial Robustness Against On-manifold Adversarial Examples
Jiancong Xiao
Liusha Yang
Yanbo Fan
Jue Wang
Zhimin Luo
OOD
20
13
0
02 Oct 2022
Adaptive Temperature Scaling for Robust Calibration of Deep Neural
  Networks
Adaptive Temperature Scaling for Robust Calibration of Deep Neural Networks
Sérgio A. Balanya
Juan Maroñas
Daniel Ramos
OOD
35
13
0
31 Jul 2022
PnPOOD : Out-Of-Distribution Detection for Text Classification via Plug
  andPlay Data Augmentation
PnPOOD : Out-Of-Distribution Detection for Text Classification via Plug andPlay Data Augmentation
Mrinal Rawat
R. Hebbalaguppe
L. Vig
OODD
6
10
0
31 Oct 2021
Improving Uncertainty of Deep Learning-based Object Classification on
  Radar Spectra using Label Smoothing
Improving Uncertainty of Deep Learning-based Object Classification on Radar Spectra using Label Smoothing
Kanil Patel
William H. Beluch
K. Rambach
Michael Pfeiffer
B. Yang
UQCV
38
9
0
27 Sep 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
53
1,111
0
07 Jul 2021
Investigation of Uncertainty of Deep Learning-based Object
  Classification on Radar Spectra
Investigation of Uncertainty of Deep Learning-based Object Classification on Radar Spectra
Kanil Patel
William H. Beluch
K. Rambach
Adriana-Eliza Cozma
Michael Pfeiffer
Bin Yang
EDL
UQCV
18
5
0
01 Jun 2021
Improving Classifier Confidence using Lossy Label-Invariant
  Transformations
Improving Classifier Confidence using Lossy Label-Invariant Transformations
Sooyong Jang
Insup Lee
James Weimer
UQCV
8
7
0
09 Nov 2020
Learning Equality Constraints for Motion Planning on Manifolds
Learning Equality Constraints for Motion Planning on Manifolds
Giovanni Sutanto
Isabel M. Rayas Fernández
Péter Englert
R. Ramachandran
Gaurav Sukhatme
6
23
0
24 Sep 2020
Multi-Class Uncertainty Calibration via Mutual Information
  Maximization-based Binning
Multi-Class Uncertainty Calibration via Mutual Information Maximization-based Binning
Kanil Patel
William H. Beluch
Binh Yang
Michael Pfeiffer
Dan Zhang
UQCV
14
34
0
23 Jun 2020
On Calibration of Mixup Training for Deep Neural Networks
On Calibration of Mixup Training for Deep Neural Networks
Juan Maroñas
D. Ramos-Castro
Roberto Paredes Palacios
UQCV
25
6
0
22 Mar 2020
Disentangling Adversarial Robustness and Generalization
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
191
273
0
03 Dec 2018
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
273
3,110
0
04 Nov 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1