ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.07024
  4. Cited By
Multi-Object Rearrangement with Monte Carlo Tree Search:A Case Study on
  Planar Nonprehensile Sorting

Multi-Object Rearrangement with Monte Carlo Tree Search:A Case Study on Planar Nonprehensile Sorting

15 December 2019
Haoran Song
Joshua A. Haustein
Weihao Yuan
Kaiyu Hang
M. Y. Wang
Danica Kragic
J. A. Stork
ArXivPDFHTML

Papers citing "Multi-Object Rearrangement with Monte Carlo Tree Search:A Case Study on Planar Nonprehensile Sorting"

11 / 11 papers shown
Title
Object-Centric Kinodynamic Planning for Nonprehensile Robot Rearrangement Manipulation
Object-Centric Kinodynamic Planning for Nonprehensile Robot Rearrangement Manipulation
Kejia Ren
Gaotian Wang
A. S. Morgan
Lydia E. Kavraki
Kaiyu Hang
79
1
0
30 Sep 2024
Monte-Carlo Tree Search for Efficient Visually Guided Rearrangement
  Planning
Monte-Carlo Tree Search for Efficient Visually Guided Rearrangement Planning
Yann Labbé
Sergey Zagoruyko
Igor Kalevatykh
Ivan Laptev
Justin Carpentier
Mathieu Aubry
Josef Sivic
OCL
82
70
0
23 Apr 2019
Learning Manipulation States and Actions for Efficient Non-prehensile
  Rearrangement Planning
Learning Manipulation States and Actions for Efficient Non-prehensile Rearrangement Planning
Joshua A. Haustein
Isac Arnekvist
J. A. Stork
Kaiyu Hang
Danica Kragic
51
11
0
11 Jan 2019
Sample-Efficient Learning of Nonprehensile Manipulation Policies via
  Physics-Based Informed State Distributions
Sample-Efficient Learning of Nonprehensile Manipulation Policies via Physics-Based Informed State Distributions
Lerrel Pinto
Aditya Mandalika
Brian Hou
S. Srinivasa
50
13
0
24 Oct 2018
Real-Time Online Re-Planning for Grasping Under Clutter and Uncertainty
Real-Time Online Re-Planning for Grasping Under Clutter and Uncertainty
Wisdom C. Agboh
M. Dogar
33
37
0
24 Jul 2018
Planning with a Receding Horizon for Manipulation in Clutter using a
  Learned Value Function
Planning with a Receding Horizon for Manipulation in Clutter using a Learned Value Function
Wissam Bejjani
Rafael Papallas
Matteo Leonetti
M. Dogar
35
33
0
21 Mar 2018
Randomized Physics-based Motion Planning for Grasping in Cluttered and
  Uncertain Environments
Randomized Physics-based Motion Planning for Grasping in Cluttered and Uncertain Environments
M. uddin
Mark Moll
Lydia E. Kavraki
J. Rosell
38
87
0
27 Nov 2017
Learning to Singulate Objects using a Push Proposal Network
Learning to Singulate Objects using a Push Proposal Network
Andreas Eitel
Nico Hauff
Wolfram Burgard
83
83
0
25 Jul 2017
High-Quality Tabletop Rearrangement with Overhand Grasps: Hardness
  Results and Fast Methods
High-Quality Tabletop Rearrangement with Overhand Grasps: Hardness Results and Fast Methods
Shuai D. Han
Nicholas M. Stiffler
A. Krontiris
Kostas E. Bekris
Jingjin Yu
27
24
0
25 May 2017
FFRob: Leveraging Symbolic Planning for Efficient Task and Motion
  Planning
FFRob: Leveraging Symbolic Planning for Efficient Task and Motion Planning
Caelan Reed Garrett
Tomas Lozano-Perez
L. Kaelbling
67
140
0
03 Aug 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.1K
193,814
0
10 Dec 2015
1