Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.05475
Cited By
Mean-Field Neural ODEs via Relaxed Optimal Control
11 December 2019
Jean-François Jabir
D. vSivska
Lukasz Szpruch
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Mean-Field Neural ODEs via Relaxed Optimal Control"
37 / 37 papers shown
Title
Propagation of Chaos for Mean-Field Langevin Dynamics and its Application to Model Ensemble
Atsushi Nitanda
Anzelle Lee
Damian Tan Xing Kai
Mizuki Sakaguchi
Taiji Suzuki
AI4CE
89
1
0
09 Feb 2025
Convergence analysis of controlled particle systems arising in deep learning: from finite to infinite sample size
Huafu Liao
Alpár R. Mészáros
Chenchen Mou
Chao Zhou
46
2
0
08 Apr 2024
Large-time asymptotics in deep learning
Carlos Esteve
Borjan Geshkovski
Dario Pighin
Enrique Zuazua
80
34
0
06 Aug 2020
When Do Neural Networks Outperform Kernel Methods?
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
76
188
0
24 Jun 2020
Gradient Flows for Regularized Stochastic Control Problems
David Siska
Lukasz Szpruch
48
21
0
10 Jun 2020
Function approximation by neural nets in the mean-field regime: Entropic regularization and controlled McKean-Vlasov dynamics
Belinda Tzen
Maxim Raginsky
28
17
0
05 Feb 2020
Machine Learning from a Continuous Viewpoint
E. Weinan
Chao Ma
Lei Wu
60
104
0
30 Dec 2019
Mean-field Langevin System, Optimal Control and Deep Neural Networks
Kaitong Hu
A. Kazeykina
Zhenjie Ren
33
15
0
16 Sep 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
73
631
0
14 Aug 2019
Stochastic Gradient and Langevin Processes
Xiang Cheng
Dong Yin
Peter L. Bartlett
Michael I. Jordan
24
5
0
07 Jul 2019
The Barron Space and the Flow-induced Function Spaces for Neural Network Models
E. Weinan
Chao Ma
Lei Wu
56
110
0
18 Jun 2019
Statistical Inference for Generative Models with Maximum Mean Discrepancy
François‐Xavier Briol
Alessandro Barp
Andrew B. Duncan
Mark Girolami
44
72
0
13 Jun 2019
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
83
163
0
11 Jun 2019
Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks
Kaitong Hu
Zhenjie Ren
David Siska
Lukasz Szpruch
MLT
41
105
0
19 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
39
243
0
27 Apr 2019
Augmented Neural ODEs
Emilien Dupont
Arnaud Doucet
Yee Whye Teh
BDL
85
622
0
02 Apr 2019
Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
64
277
0
16 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
137
966
0
24 Jan 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
174
1,628
0
28 Dec 2018
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
87
823
0
19 Dec 2018
Non-asymptotic bounds for sampling algorithms without log-concavity
Mateusz B. Majka
Aleksandar Mijatović
Lukasz Szpruch
33
73
0
21 Aug 2018
A Mean-Field Optimal Control Formulation of Deep Learning
Weinan E
Jiequn Han
Qianxiao Li
OOD
48
183
0
03 Jul 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
232
5,024
0
19 Jun 2018
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
Lénaïc Chizat
Francis R. Bach
OT
157
731
0
24 May 2018
A Mean Field View of the Landscape of Two-Layers Neural Networks
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
76
855
0
18 Apr 2018
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
50
145
0
26 Dec 2017
Geometrical Insights for Implicit Generative Modeling
Léon Bottou
Martín Arjovsky
David Lopez-Paz
Maxime Oquab
45
49
0
21 Dec 2017
Maximum Principle Based Algorithms for Deep Learning
Qianxiao Li
Long Chen
Cheng Tai
E. Weinan
47
222
0
26 Oct 2017
Geometry of Optimization and Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Ruslan Salakhutdinov
Nathan Srebro
AI4CE
47
132
0
08 May 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
269
4,620
0
10 Nov 2016
Understanding Deep Convolutional Networks
S. Mallat
FAtt
AI4CE
102
639
0
19 Jan 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
59
410
0
17 Jul 2015
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
249
747
0
06 Jun 2015
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
132
2,775
0
20 Feb 2015
On the rate of convergence in Wasserstein distance of the empirical measure
N. Fournier
Arnaud Guillin
117
1,141
0
07 Dec 2013
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
135
4,210
0
04 Jun 2013
1