ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.05078
  4. Cited By
An Improving Framework of regularization for Network Compression
v1v2 (latest)

An Improving Framework of regularization for Network Compression

11 December 2019
E. Zhenqian
Weiguo Gao
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "An Improving Framework of regularization for Network Compression"

26 / 26 papers shown
Title
A Survey of Model Compression and Acceleration for Deep Neural Networks
A Survey of Model Compression and Acceleration for Deep Neural Networks
Yu Cheng
Duo Wang
Pan Zhou
Zhang Tao
115
1,097
0
23 Oct 2017
Soft Weight-Sharing for Neural Network Compression
Soft Weight-Sharing for Neural Network Compression
Karen Ullrich
Edward Meeds
Max Welling
172
419
0
13 Feb 2017
Paying More Attention to Attention: Improving the Performance of
  Convolutional Neural Networks via Attention Transfer
Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer
Sergey Zagoruyko
N. Komodakis
147
2,590
0
12 Dec 2016
SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural
  Networks for Real-Time Object Detection for Autonomous Driving
SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving
Bichen Wu
Alvin Wan
F. Iandola
Peter H. Jin
Kurt Keutzer
112
514
0
04 Dec 2016
Learning the Number of Neurons in Deep Networks
Learning the Number of Neurons in Deep Networks
J. Álvarez
Mathieu Salzmann
206
414
0
19 Nov 2016
Automatic Node Selection for Deep Neural Networks using Group Lasso
  Regularization
Automatic Node Selection for Deep Neural Networks using Group Lasso Regularization
Tsubasa Ochiai
Shigeki Matsuda
Hideyuki Watanabe
S. Katagiri
59
22
0
17 Nov 2016
Pruning Filters for Efficient ConvNets
Pruning Filters for Efficient ConvNets
Hao Li
Asim Kadav
Igor Durdanovic
H. Samet
H. Graf
3DPC
195
3,707
0
31 Aug 2016
Learning Structured Sparsity in Deep Neural Networks
Learning Structured Sparsity in Deep Neural Networks
W. Wen
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
199
2,341
0
12 Aug 2016
Group Sparse Regularization for Deep Neural Networks
Group Sparse Regularization for Deep Neural Networks
Simone Scardapane
Danilo Comminiello
Amir Hussain
A. Uncini
431
466
0
02 Jul 2016
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
  Systems
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
Martín Abadi
Ashish Agarwal
P. Barham
E. Brevdo
Zhiwen Chen
...
Pete Warden
Martin Wattenberg
Martin Wicke
Yuan Yu
Xiaoqiang Zheng
294
11,155
0
14 Mar 2016
Inception-v4, Inception-ResNet and the Impact of Residual Connections on
  Learning
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
382
14,280
0
23 Feb 2016
Convolutional neural networks with low-rank regularization
Convolutional neural networks with low-rank regularization
Cheng Tai
Tong Xiao
Yi Zhang
Xiaogang Wang
E. Weinan
BDL
116
462
0
19 Nov 2015
Net2Net: Accelerating Learning via Knowledge Transfer
Net2Net: Accelerating Learning via Knowledge Transfer
Tianqi Chen
Ian Goodfellow
Jonathon Shlens
187
672
0
18 Nov 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
263
8,864
0
01 Oct 2015
Data-free parameter pruning for Deep Neural Networks
Data-free parameter pruning for Deep Neural Networks
Suraj Srinivas
R. Venkatesh Babu
3DPC
87
547
0
22 Jul 2015
Bayesian Dark Knowledge
Bayesian Dark Knowledge
Masashi Sugiyama
Vivek Rathod
R. Garnett
Max Welling
BDLUQCV
101
259
0
14 Jun 2015
Learning both Weights and Connections for Efficient Neural Networks
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
320
6,715
0
08 Jun 2015
Fast ConvNets Using Group-wise Brain Damage
Fast ConvNets Using Group-wise Brain Damage
V. Lebedev
Victor Lempitsky
AAML
201
449
0
08 Jun 2015
Compressing Neural Networks with the Hashing Trick
Compressing Neural Networks with the Hashing Trick
Wenlin Chen
James T. Wilson
Stephen Tyree
Kilian Q. Weinberger
Yixin Chen
168
1,191
0
19 Apr 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
367
19,745
0
09 Mar 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
469
43,357
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,433
0
22 Dec 2014
Speeding-up Convolutional Neural Networks Using Fine-tuned
  CP-Decomposition
Speeding-up Convolutional Neural Networks Using Fine-tuned CP-Decomposition
V. Lebedev
Yaroslav Ganin
M. Rakhuba
Ivan Oseledets
Victor Lempitsky
77
886
0
19 Dec 2014
FitNets: Hints for Thin Deep Nets
FitNets: Hints for Thin Deep Nets
Adriana Romero
Nicolas Ballas
Samira Ebrahimi Kahou
Antoine Chassang
C. Gatta
Yoshua Bengio
FedML
332
3,906
0
19 Dec 2014
Predicting Parameters in Deep Learning
Predicting Parameters in Deep Learning
Misha Denil
B. Shakibi
Laurent Dinh
MarcÁurelio Ranzato
Nando de Freitas
OOD
224
1,323
0
03 Jun 2013
A note on the group lasso and a sparse group lasso
A note on the group lasso and a sparse group lasso
J. Friedman
Trevor Hastie
Robert Tibshirani
234
839
0
05 Jan 2010
1