ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.04986
  4. Cited By
What You See is What You Get: Exploiting Visibility for 3D Object
  Detection

What You See is What You Get: Exploiting Visibility for 3D Object Detection

10 December 2019
Peiyun Hu
Jason Ziglar
David Held
Deva Ramanan
    3DPC
ArXivPDFHTML

Papers citing "What You See is What You Get: Exploiting Visibility for 3D Object Detection"

9 / 9 papers shown
Title
HDNET: Exploiting HD Maps for 3D Object Detection
HDNET: Exploiting HD Maps for 3D Object Detection
Binh Yang
Ming Liang
R. Urtasun
3DPC
3DV
57
320
0
21 Dec 2020
4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
Chris Choy
JunYoung Gwak
Silvio Savarese
3DPC
110
1,768
0
18 Apr 2019
nuScenes: A multimodal dataset for autonomous driving
nuScenes: A multimodal dataset for autonomous driving
Holger Caesar
Varun Bankiti
Alex H. Lang
Sourabh Vora
Venice Erin Liong
Qiang Xu
Anush Krishnan
Yuxin Pan
G. Baldan
Oscar Beijbom
3DPC
221
5,653
0
26 Mar 2019
LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous
  Driving
LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving
Gregory P. Meyer
A. Laddha
E. Kee
Carlos Vallespi-Gonzalez
Carl K. Wellington
3DPC
47
338
0
20 Mar 2019
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
Shaoshuai Shi
Xiaogang Wang
Hongsheng Li
3DPC
137
2,392
0
11 Dec 2018
PointConv: Deep Convolutional Networks on 3D Point Clouds
PointConv: Deep Convolutional Networks on 3D Point Clouds
Wenxuan Wu
Zhongang Qi
Fuxin Li
3DPC
98
1,552
0
17 Nov 2018
Frustum PointNets for 3D Object Detection from RGB-D Data
Frustum PointNets for 3D Object Detection from RGB-D Data
C. Qi
Wen Liu
Chenxia Wu
Hao Su
Leonidas Guibas
3DPC
118
2,257
0
22 Nov 2017
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
477
3,264
0
24 Nov 2016
Cyclical Learning Rates for Training Neural Networks
Cyclical Learning Rates for Training Neural Networks
L. Smith
ODL
106
2,515
0
03 Jun 2015
1