ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.03277
  4. Cited By
Preserving Causal Constraints in Counterfactual Explanations for Machine
  Learning Classifiers

Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers

6 December 2019
Divyat Mahajan
Chenhao Tan
Amit Sharma
    OOD
    CML
ArXivPDFHTML

Papers citing "Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers"

50 / 50 papers shown
Title
Understanding Fixed Predictions via Confined Regions
Understanding Fixed Predictions via Confined Regions
Connor Lawless
Tsui-Wei Weng
Berk Ustun
Madeleine Udell
48
0
0
22 Feb 2025
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning
Numair Sani
Daniel Malinsky
I. Shpitser
CML
79
15
0
10 Jan 2025
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
HR-Bandit: Human-AI Collaborated Linear Recourse Bandit
Junyu Cao
Ruijiang Gao
Esmaeil Keyvanshokooh
37
1
0
18 Oct 2024
Probabilistically Plausible Counterfactual Explanations with Normalizing
  Flows
Probabilistically Plausible Counterfactual Explanations with Normalizing Flows
Patryk Wielopolski
Oleksii Furman
Jerzy Stefanowski
Maciej Ziȩba
43
2
0
27 May 2024
Trustworthy Actionable Perturbations
Trustworthy Actionable Perturbations
Jesse Friedbaum
S. Adiga
Ravi Tandon
AAML
38
2
0
18 May 2024
CountARFactuals -- Generating plausible model-agnostic counterfactual
  explanations with adversarial random forests
CountARFactuals -- Generating plausible model-agnostic counterfactual explanations with adversarial random forests
Susanne Dandl
Kristin Blesch
Timo Freiesleben
Gunnar Konig
Jan Kapar
B. Bischl
Marvin N. Wright
AAML
32
5
0
04 Apr 2024
Generating Likely Counterfactuals Using Sum-Product Networks
Generating Likely Counterfactuals Using Sum-Product Networks
Jiri Nemecek
Tomás Pevný
Jakub Marecek
TPM
76
0
0
25 Jan 2024
Counterfactual Explanation Policies in RL
Counterfactual Explanation Policies in RL
Shripad Deshmukh
R Srivatsan
Supriti Vijay
Jayakumar Subramanian
Chirag Agarwal
OffRL
35
0
0
25 Jul 2023
Explainable Predictive Maintenance
Explainable Predictive Maintenance
Sepideh Pashami
Sławomir Nowaczyk
Yuantao Fan
Jakub Jakubowski
Nuno Paiva
...
Bruno Veloso
M. Sayed-Mouchaweh
L. Rajaoarisoa
Grzegorz J. Nalepa
João Gama
32
8
0
08 Jun 2023
GLOBE-CE: A Translation-Based Approach for Global Counterfactual
  Explanations
GLOBE-CE: A Translation-Based Approach for Global Counterfactual Explanations
Dan Ley
Saumitra Mishra
Daniele Magazzeni
LRM
38
16
0
26 May 2023
counterfactuals: An R Package for Counterfactual Explanation Methods
counterfactuals: An R Package for Counterfactual Explanation Methods
Susanne Dandl
Andreas Hofheinz
Martin Binder
B. Bischl
Giuseppe Casalicchio
31
2
0
13 Apr 2023
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for
  Tabular Data using Normalizing Flows
CeFlow: A Robust and Efficient Counterfactual Explanation Framework for Tabular Data using Normalizing Flows
Tri Dung Duong
Qian Li
Guandong Xu
OOD
37
7
0
26 Mar 2023
Towards Learning and Explaining Indirect Causal Effects in Neural
  Networks
Towards Learning and Explaining Indirect Causal Effects in Neural Networks
Abbaavaram Gowtham Reddy
Saketh Bachu
Harsh Nilesh Pathak
Ben Godfrey
V. Balasubramanian
V. Varshaneya
Satya Narayanan Kar
CML
31
0
0
24 Mar 2023
Understanding User Preferences in Explainable Artificial Intelligence: A
  Survey and a Mapping Function Proposal
Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal
M. Hashemi
Ali Darejeh
Francisco Cruz
40
3
0
07 Feb 2023
Finding Regions of Counterfactual Explanations via Robust Optimization
Finding Regions of Counterfactual Explanations via Robust Optimization
Donato Maragno
Jannis Kurtz
Tabea E. Rober
Rob Goedhart
cS. .Ilker Birbil
D. Hertog
49
21
0
26 Jan 2023
Evaluating counterfactual explanations using Pearl's counterfactual
  method
Evaluating counterfactual explanations using Pearl's counterfactual method
Bevan I. Smith
CML
22
1
0
06 Jan 2023
Decomposing Counterfactual Explanations for Consequential Decision
  Making
Decomposing Counterfactual Explanations for Consequential Decision Making
Martin Pawelczyk
Lea Tiyavorabun
Gjergji Kasneci
CML
21
1
0
03 Nov 2022
Backtracking Counterfactuals
Backtracking Counterfactuals
Julius von Kügelgen
Abdirisak Mohamed
Sander Beckers
LRM
43
16
0
01 Nov 2022
Improvement-Focused Causal Recourse (ICR)
Improvement-Focused Causal Recourse (ICR)
Gunnar Konig
Timo Freiesleben
Moritz Grosse-Wentrup
CML
31
15
0
27 Oct 2022
Redefining Counterfactual Explanations for Reinforcement Learning:
  Overview, Challenges and Opportunities
Redefining Counterfactual Explanations for Reinforcement Learning: Overview, Challenges and Opportunities
Jasmina Gajcin
Ivana Dusparic
CML
OffRL
35
8
0
21 Oct 2022
CLEAR: Generative Counterfactual Explanations on Graphs
CLEAR: Generative Counterfactual Explanations on Graphs
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
CML
OOD
35
53
0
16 Oct 2022
Counterfactual Explanations Using Optimization With Constraint Learning
Counterfactual Explanations Using Optimization With Constraint Learning
Donato Maragno
Tabea E. Rober
Ilker Birbil
CML
58
10
0
22 Sep 2022
MACE: An Efficient Model-Agnostic Framework for Counterfactual
  Explanation
MACE: An Efficient Model-Agnostic Framework for Counterfactual Explanation
Wenzhuo Yang
Jia Li
Caiming Xiong
S. Hoi
CML
35
13
0
31 May 2022
Features of Explainability: How users understand counterfactual and
  causal explanations for categorical and continuous features in XAI
Features of Explainability: How users understand counterfactual and causal explanations for categorical and continuous features in XAI
Greta Warren
Mark T. Keane
R. Byrne
CML
27
22
0
21 Apr 2022
Probabilistically Robust Recourse: Navigating the Trade-offs between
  Costs and Robustness in Algorithmic Recourse
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
Martin Pawelczyk
Teresa Datta
Johannes van-den-Heuvel
Gjergji Kasneci
Himabindu Lakkaraju
24
38
0
13 Mar 2022
LIMREF: Local Interpretable Model Agnostic Rule-based Explanations for
  Forecasting, with an Application to Electricity Smart Meter Data
LIMREF: Local Interpretable Model Agnostic Rule-based Explanations for Forecasting, with an Application to Electricity Smart Meter Data
Dilini Sewwandi Rajapaksha
Christoph Bergmeir
AI4TS
14
16
0
15 Feb 2022
Causal Explanations and XAI
Causal Explanations and XAI
Sander Beckers
CML
XAI
26
34
0
31 Jan 2022
Counterfactual Explanations via Latent Space Projection and
  Interpolation
Counterfactual Explanations via Latent Space Projection and Interpolation
Brian Barr
Matthew R. Harrington
Samuel Sharpe
Capital One
BDL
33
10
0
02 Dec 2021
On Quantitative Evaluations of Counterfactuals
On Quantitative Evaluations of Counterfactuals
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
19
10
0
30 Oct 2021
Deep Neural Networks and Tabular Data: A Survey
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
27
647
0
05 Oct 2021
Model Explanations via the Axiomatic Causal Lens
Gagan Biradar
Vignesh Viswanathan
Yair Zick
XAI
CML
25
1
0
08 Sep 2021
Longitudinal Distance: Towards Accountable Instance Attribution
Longitudinal Distance: Towards Accountable Instance Attribution
Rosina O. Weber
Prateek Goel
S. Amiri
G. Simpson
16
0
0
23 Aug 2021
A Framework and Benchmarking Study for Counterfactual Generating Methods
  on Tabular Data
A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data
Raphael Mazzine
David Martens
32
33
0
09 Jul 2021
Counterfactual Explanations for Arbitrary Regression Models
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
24
26
0
29 Jun 2021
How Well do Feature Visualizations Support Causal Understanding of CNN
  Activations?
How Well do Feature Visualizations Support Causal Understanding of CNN Activations?
Roland S. Zimmermann
Judy Borowski
Robert Geirhos
Matthias Bethge
Thomas S. A. Wallis
Wieland Brendel
FAtt
44
31
0
23 Jun 2021
Algorithmic Recourse in Partially and Fully Confounded Settings Through
  Bounding Counterfactual Effects
Algorithmic Recourse in Partially and Fully Confounded Settings Through Bounding Counterfactual Effects
Julius von Kügelgen
N. Agarwal
Jakob Zeitler
Afsaneh Mastouri
Bernhard Schölkopf
CML
17
2
0
22 Jun 2021
Rational Shapley Values
Rational Shapley Values
David S. Watson
23
20
0
18 Jun 2021
Optimal Counterfactual Explanations in Tree Ensembles
Optimal Counterfactual Explanations in Tree Ensembles
Axel Parmentier
Thibaut Vidal
19
54
0
11 Jun 2021
Consequence-aware Sequential Counterfactual Generation
Consequence-aware Sequential Counterfactual Generation
Philip Naumann
Eirini Ntoutsi
OffRL
17
24
0
12 Apr 2021
Towards Robust and Reliable Algorithmic Recourse
Towards Robust and Reliable Algorithmic Recourse
Sohini Upadhyay
Shalmali Joshi
Himabindu Lakkaraju
25
108
0
26 Feb 2021
Explaining the Black-box Smoothly- A Counterfactual Approach
Explaining the Black-box Smoothly- A Counterfactual Approach
Junyu Chen
Yong Du
Yufan He
W. Paul Segars
Ye Li
MedIm
FAtt
65
100
0
11 Jan 2021
GeCo: Quality Counterfactual Explanations in Real Time
GeCo: Quality Counterfactual Explanations in Real Time
Maximilian Schleich
Zixuan Geng
Yihong Zhang
D. Suciu
46
61
0
05 Jan 2021
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Interpretability and Explainability: A Machine Learning Zoo Mini-tour
Ricards Marcinkevics
Julia E. Vogt
XAI
28
119
0
03 Dec 2020
A Series of Unfortunate Counterfactual Events: the Role of Time in
  Counterfactual Explanations
A Series of Unfortunate Counterfactual Events: the Role of Time in Counterfactual Explanations
Andrea Ferrario
M. Loi
22
5
0
09 Oct 2020
The Intriguing Relation Between Counterfactual Explanations and
  Adversarial Examples
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
35
62
0
11 Sep 2020
On Counterfactual Explanations under Predictive Multiplicity
On Counterfactual Explanations under Predictive Multiplicity
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
25
85
0
23 Jun 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic
  approach
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
28
178
0
11 Jun 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
24
337
0
14 Feb 2020
Asymmetric Shapley values: incorporating causal knowledge into
  model-agnostic explainability
Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability
Christopher Frye
C. Rowat
Ilya Feige
16
180
0
14 Oct 2019
Explaining Visual Models by Causal Attribution
Explaining Visual Models by Causal Attribution
Álvaro Parafita
Jordi Vitrià
CML
FAtt
62
35
0
19 Sep 2019
1